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Abstract

In this thesis we investigate how and to which extent one can exploit risk-
aversion and modify the perceived cost of the players in selfish routing so that
the Price of Anarchy (PoA) is improved. We adopt the model of y-modifiable
routing games, a variant of routing games with restricted tolls. We prove that
computing the best y -enforceable flow is NP -hard for parallel-link networks with
affine latencies and two classes of heterogeneous risk-averse players. On the
positive side, we show that for parallel-link networks with heterogeneous players
and for series-parallel networks with homogeneous players, there exists a
nicely structured y-enforceable flow whose PoA improves fast as y increases.
Moreover, we prove that the PoA of this flow is best possible in the worst-case,
in the sense that there are instances where (i) the best y-enforceable flow has
the same PoA, and (ii) considering more flexible modifications does not lead to
any further improvement.
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1. Introduction

Routing games provide an elegant and practically useful model of selfish re-
source allocation in transportation and communication networks and have been
extensively studied (see e.g., [11]). The majority of previous work assumes
that the players select their routes based on precise knowledge of edge delays.
In practical applications however, the players cannot accurately predict the
actual delays due to their limited knowledge about the traffic conditions and due
to unpredictable events that affect the edge delays and introduce uncertainty
(seee.g., [9,7, 1, 8] for examples). Hence, the players select their routes based only
on delay estimations and are aware of the uncertainty and the potential inaccuracy
of them. Therefore, to secure themselves from increased delays, whenever this
may have a considerable influence, the players select their routes taking uncer-
tainty into account (e.g., people take a safe route or plan for a longer-than-usual
delay when they head to an important meeting or to catch a long-distance flight).

Recent work (see e.g., [7, 10, 1, 8] and the references therein) considers routing
games with stochastic delays and risk-averse players, where instead of the route
that minimizes her expected delay, each player selects a route that guarantees
a reasonably low actual delay with a reasonably high confidence. There have
been different models of stochastic routing games, each modeling the individual
cost of risk-averse players in a slightly different way. In all cases, the actual delay
is modeled as a random variable and the perceived cost of the players is either
a combination of the expectation and the standard deviation (or the variance)
of their delay [7, 8] or a player-specific quantile of the delay distribution [9, 1]
(see also [12, 4] about the perceived cost of risk-averse players).

No matter the precise modeling, we should expect that stochastic delays and
risk-aversion cannot improve the network performance at equilibrium. Interest-
ingly, [10, 8] indicate that in certain settings, stochastic delays and risk-aversion
can actually improve the network performance at equilibrium. Motivated by
these results, we consider routing games on parallel-link and series-parallel net-
works and investigate how one can exploit risk-aversion in order to modify the
perceived cost of the (possibly heterogeneous) players so that the PoA is signifi-
cantly improved.
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1.1. Routing Games

To discuss our approach more precisely, we introduce the basic notation and
terminology about routing games. A (non-atomic) selfish routing game (or in-
stance) is a tuple G=(G(V,E),(£,)..;.r). where G(V,E) is a directed network
with a source s and asink ¢, /,:R,; = R, is a non-decreasing delay (or latency
function associated with edge e and r >0 is the traffic rate. We let P denote
the set of simple s —¢ pathsin G.We say that G is a parallel-link network if each
s —t path is a single edge (or link).

A (feasible) flow f is a non-negative vector on P such that Z;fp =r. We let
pe
/.= pr be flow routed by f on edge e. Given a flow f, the latency of each

pesp

edge e is £,(f)=1,(/.). the latency of each path p is ¢,(f)=>/.(f) and the
latency of f is L(f)zmaxép(f). eep

pif,>0

The traffic » is divided among infinitely many players, each trying to minimize
her latency. A flow f is a Wardrop equilibrium (or a Nash flow, for brevity), if all
traffic is routed on minimum latency paths, i.e,, for any peP with f, >0 and
for all p’eP, ¢,(f)<(,(f). Therefore, in a Nash flow f, all players incur a
minimum common latency min/ (/)= L( f). Under weak assumptions on delay
functions, a Nash flow exists and is essentially unique (see e.g., [11]).

The efficiency of a flow f is measured by the total latency C(f) of the players, i.e.,
by C(f)=> f.L.(f). The optimal flow, denoted o, minimizes the total latency

ecE
among all feasible flows. The Price of Anarchy (PoA) quantifies the performance

degradation due to selfishness. The PoA(g) of a routing game G is the ratio
C(f)/C(0),where f isthe Nash flow and o is the optimal flow o of G. The PoA
of a class of routing games is the maximum PoA over all games in the class.
For routing games with latency functions in a class D, the PoA is equal

to PoA(D)=p, (D)=(1-p(D))", where p(D)= sup y(l(;cl)(;;(y)) only

depends on the class of latency functions D [11, 3].
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1.2. Using Risk-Aversion to Modify Edge Latencies

The starting point of our work is that in some practical applications, we may
intentionally introduce variance to edge delays so that the expected delay does
not change, but the risk-averse cost of the players increases. E.g., in a transporta-
tion network, we can randomly increase or decrease the proportion of time
allocated to the green traffic light for short periods or we can open or close an
auxiliary traffic lane. In a communication network, we might randomly increase
or decrease the link capacity allocated to a particular type of traffic or change its
priority. At the intuitive level, we expect that the effect of such random changes
to risk-averse players is similar to that of refundable tolls (see e.g., [5]), albeit
restricted in magnitude due to the bounded variance in edge delays that we can
afford.

E.g.. let e be an edge with latency Ee(x) where we can increase the latency
temporarily to (1+¢,)¢,(x) and decrease it temporarily to (1-a,)¢,(x). If we
implement the former change with probability p, and the latter with probability
p, <1-p,, the latency function of e becomes a random variable with expecta-
tion | p(1+a)+p,(1-a,)+(1-p,—p,)|¢.(x). Adjusting p, and p, (and
possibly a, and «,) so that p, = p,a,, we achieve an expected latency of
Ke(x). However, if the players are (homogeneously) risk-averse and their
perceived delay is given by an (1—p1+5)-quantile of the delay distribution
(e.g., as in [9, 1]), the perceived latency on e is (1+a,)¢,(x). Similarly, if the
individual cost of the risk-averse players are given by the expectation plus
the standard deviation of the delay distribution (e.g., as in [7]), the perceived
latency is (1+\/p10(12 + p,a; )ﬁe(x). In both cases, we can achieve a significant
increase in the delay perceived by risk-averse players, while the expected delay
remains unchanged.

1.3. Contribution

In this work, we assume a given upper bound » on the maximum increase in the
latency functions and refer to the corresponding routing game as a y -modifiable
game. We consider both homogeneous and heterogeneous risk-averse players.
We adopt this model as a simple and general abstraction of how one can exploit
risk-aversion to improve the PoA of routing games. On the conceptual side and
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to the best of our knowledge, this is the first time that risk-aversion is proposed
as a means of implementing restricted tolls, and through this, as a potential re-
medy to the inefficiency of selfish routing.

A flow f is y-enforceable if there is y, -modification on each edge e, with
0<y <y, so that f is a Nash flow of the modified game, i.e., for each
player class i, for every path p used by class i, and for all paths p',
D A+a'y ) (f)<D A+a'y ), (f). In this work, we are interested in

eep eep’

computing either the best y-enforceable flow, which minimizes total latency
among all y-enforceable flows, or a y-enforceable flow with low PoA. We
measure the PoA in terms of the total expected latency (instead of the total
perceived delay of the players). In practical applications, the total expected
latency is directly related to many crucial performance parameters (e.g., to the
expected pollution in a transportation network or to the expected throughput
in @ communication network) and thus, it is the quantity that a central planner
usually seeks to minimize.

We consider routing games on parallel links with homogeneous players and
show that for every >0, there is a nicely structured py-enforceable flow
whose PoA improves significantly as y increases. gets a 0-modification, while
if £, >0,, e gets a y-modification (Lemma 1). Using the variational inequality
approach of [3], we provide an asymptotically tight bound for the PoA of the
network, which is a natural generalization of the bound introduced in [3].

We also investigate parallel-link games with heterogenous players. We prove that
computing the best y-enforceable flow is NP-hard for parallel-link games with
affine latencies and only two classes of heterogeneous risk-averse players
(Theorem 3). On the positive side, we apply [6, Algorithm 1] and show
(Theorem 5) that the y-enforceable flow f of Lemma 1 can be turned into a
y -enforceable flow for parallel-link instances with heterogeneous players. Since
only the y-modifications are adjusted for heterogeneous players, but the flow
itself does not change, the PoA of f is bounded as above and remains best
possible in the worst case.

Then, we extend our approach of finding a y-enforceable flow that “mimics”
the optimal flow to series-parallel networks. Extending the rerouting procedure
of Lemma 1, we show that for routing games in series-parallel networks with
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homogeneous players, thereisa y -enforceable flowwith PoA atmost (1 —ﬂy(D))‘l
(Lemma 1 and Theorem 1).

Finally, we consider (p,y)-modifiable games, where the p-norm of the edge
modifications vector (y,),.. is at most y. This generalization captures applications
where the total variance introduced in the network should be bounded by y and
could potentially lead to an improved PoA. We prove that the worst-case PoA
under (p,;/)-modifications is essentially identical to the worst-case PoA under
y / X/m -modifications (Theorem 7). Therefore, even for ( p,y)-modifiable games,
the PoA of the 7/%-enforceable flow of Lemma 1 is essentially best possible.
Due to space constraints, we only sketch the main ideas behind our results and
defer the technical details to the full version of this work.

1.4. Previous Work

On the conceptual side, our work is closest to those considering the PoA
of stochastic routing games with risk-averse players [7, 1, 10]. Nikolova and
Stier-Moses [8] recently introduced the price of risk-aversion (PRA), which is
the worst-case ratio of the total latency of the Nash flow for risk-averse players
to the total latency of the Nash flow for risk-neutral players. Interestingly, PRA
can be smaller than 1 and as low as 1—,6’(2)) for stochastic routing games on
parallel-links (i.e., risk-aversion can improve the PoA to 1 for certain instances).
On the technical side, our workis closest to those investigating the properties of
restricted refundable tolls for routing games [2, 6].

2. The Model and Preliminaries

The basic model of routing games is introduced in Section 1. Next, we introduce
some more notation and the classes of ¥ -modifiable and (p,]/) -modifiable games.

2.1. 7y-Modifiable Routing Games.

A selfish routing game with heterogeneous players in k classes is a tuple
g:(G(V,E),(Ee)eEE,(af)ie[k]’(ri)ie[k]), where G is a directed s—t network
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with m edges, a' is the aversion factor of the players in class i and 7, is the

amount of traffic with aversion a'. We assume that ¢' =1 and a'<a’ <...<a".
If the players are homogeneous, there is a single class with risk aversion a' =1 and
traffic rate 7. Then, an instance is G =(G,/,r).

A flow f is a non-negative vector on Px{l,....k}. We let fp“[ be the flow with
aversion a' on path p and f,=>f be the total flow on path p. Similarly,

fe“i = pr“i isthe flow with aversion @’ on edge e and f, = E fp“i is the total flow
peep i

on edge e. We let a, (f) be the smallest aversion factor in e under f.If e is not
used by 1, we let a™ (f)=a". We say that an edge e (resp. path p) is used by
players of type a' if fe"l >0 (resp. for all e p). To simplify notation, we may write
¢,,instead of £,(f).

min

We say that a routing game G is y-modifiable if we can select a y, 6[0,7] for
each edge e and change the edge latencies perceived by the players of type
a' from £,(x) to (1+ai;/e)£e(x) using small random perturbations.

Any vector fz(;/e) where ;/ee[O,y] for each edge , is a y-modification

ecE !
of G. Given a y-modification T', we let G" denote the y -modified routing
game where the perceived cost of the players is changed according to the

modification T".

A flow f is a Nash flow of Ql: , if for any path p and any type a’ with f}ff >0
and for all paths p', > (1+a'y )l (f)<D (1+d'y,)l.(f). Given a routing

eep eep’

game G, we say thataflow f is y-enforceable, or simply enforceable, if there exists
a y -modification " of G such that f is a Nash flow of gf.

Our assumption is that y-modifications do not change the expected latency.
Therefore, the total latency of f in both G" and G is C(f)=> f./,(f). Hence,

eckE
the optimal flow o of G is also an optimal flow of G'. A flow f is the best

y -enforceable flow of G if for any other y-enforceable flow f' of G,
C(f)<C(f'). The Price of Anarchy PoA(gr)of the modified game G' is equal

to C(f)/C(0), where f is the Nash flow of G". For a y-modifiable game G,
the PoA of G under y-modifications, denoted PoA (G), is C(f)/C(o),
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where f is the best y-enforceable flow of G. For routing games with latency
functions in class D, PoA (D) denotes the maximum PoA (G) over all
y -modifiable games G with latenciesin D.

2.2. (p, y)-Modifiable Routing Games

Generalizing y -modifiable games, we select a modification y, >0 for each edge
e so that [[(7,) .z Il,=» Zy/f <y, for some given integer p>1, and change the

eckE
perceived edge latencies as above. We refer to such games as (p,;/)-modifiable.

All the notation above naturally generalizes to (p,;/)-modifiable games. The PoA
of a game G under (p,y)-modifications, denoted PoA’(G), is C(f)/C(0),
where [ is the best (p,y)-enforceable flow of G. Similarly, PoA’ (D) is the
maximum PoA of all (p,;/)-modifiable games with latency functions in class D.

2.3. Series-Parallel Networks

A directed s - ¢ network G(V,E) is series-parallel if it either consists of a single
edge (s,t) or can be obtained from two series-parallel networks with ter-
minals (s,,4,) and (s,,t,) composed either in series or in parallel. In a series
composition, t, is identified with s,, s, becomes s, and ¢, b comes ¢. In a parallel
composition, s, is identified with s, and becomes s, and ¢ is identified with ¢,
and becomes t.

3. Modifying Routing Games in Parallel-Link Networks

In this section, we study y-modifiable games on parallel-link networks with
homogeneous risk-averse players. We show that for any instance G, there exist
a flow f mimicking the optimal flow of G, o, and a ¥ -modification enforcing f
as the Nash flow of the modified instance.

Lemma1.let :(G,f,r) be a y-modifiable instance on parallel-links with homo-
geneous risk-averse players and let o be the optimal flow of G. There is a feasible
flow f and a y-modification I’ of G such that
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(i) f is a Nash flow of the modified instance G,
(i) for any link e, if f, <o,,then y,=0,andif f, >o0,,then y,=y.

Moreover, given o, we can compute f and T in time O(mTNE), where T is
the complexity of computing the Nash flow of any given y -modification of G.

Proof. The proof of the theorem is constructive, by induction on the number
of links. The base case is obvious. For the inductive step, let m be a used link
with maximum latency in o. Removing m and decreasing the total traffic rate
by o, >0, we obtainan instance G, =(G_,./,r—o,) with one link less than G.

By induction hypothesis, there are a flow ' and a y-modification f':(y;)eeE_m
so that properties (i) and (ii) hold for G , . Now we restore link m and the traffic
rate to . The lemma follows directly from the hypothesis if there is a modification
7, sothat (1+7,)¢,(0)=L(f"). Otherwise, we have that ¢, (o)>L(f"). Then,
we carefully reroute flow from link m to the remaining links while maintaining
properties (i) and (ii) in G_, . We do so until the latency of m becomes equal to the
cost of the equilibrium flow that we maintain (under rerouting) in G , . In order
to maintain property (ii), we pay attention to links e where the flow f reaches

for the first time and to links ¢ where y, reaches y for the first time.
For the former, we stop increasing flow and start increasing y/, so that the
equilibrium property is maintained. For the latter, we stop increasing y. and
start increasing the flow again.

3.1. Price of Anarchy Analysis

We next prove an upper bound on the PoA of the y-enforceable flow f of
Lemma 1. This also serves as an upper bound on the PoA  of the best y -enforce-
able flow. The approach is conceptually similar to that of [3] and exploits the
properties (i) and (i) of Lemma 1.

Theorem 1. For y-modifiable instances on parallel-links with latency functions in
class D, PoA (D)< p, (D)=(1-p4,(D)) ", where

B,(D)=sup y(ﬁ(X)—K(y))—y/(x—y)g(x)‘

(eD,x>y>0 XK(X)
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Furthermore, we can show in the following theorem that bounds on the PoA  of
Theorem 1 are best possible in the worst-case.

Theorem 2. For any class of latency functions D and for any & >0, there is
a y-modifiable instance G on parallel links with homogeneous risk-averse

players and latencies in class D so that PoA (G)2p (D)-¢.

4. Parallel-Link Games with Heterogeneous Players

In contrast to the case of homogeneous players, computing the best y-enforce-
able flow for heterogeneous risk-averse players is NP-hard, even for affine
latencies.

Theorem 3. Given an instance G on parallel links with affine latencies and two
classes of risk-averse players, a ¥y >0 and a target cost C >0, itis NP-complete to
determine whether there is a y -enforceable flow with total latency at most C.

4.1. y-Enforceable Flows with Good Price of Anarchy

Since the best enforceable flow is NP-hard, we next establish the existence of an
enforceable flow that “mimics” the optimal flow o, as described by the proper-
ties (i) and (ii) in Lemma 1 and achieves a PoA as low as that in Theorem 1. In
the following, we assume that the links are indexed in increasing order of fl.(f),
ie. i< j=/(,(f)<(,(f), with ties broken in favor of links with f, >0. We start
with a necessary and sufficient condition for a flow f to be y-enforceable.
[6, Algorithm 1] shows how to efficiently compute a y-modification for any flow
f that satisfies the following.

Theorem 4. ([6, Theorem 5]) Let G be a y-modifiable instance on parallel links
with heterogeneous players, let f be a feasible flow and let 4 be the maximum
index of a link used by f.Then, f is y-enforceable if and only if
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11 —
(i) for any used link i, y£,(f)2 2 b (f)mmf; /)

I=i 1+1

(i foralllinks i and j,if ¢,(f)<(,(f), then a™ (f)<a}™ (f) (morerisk-averse
players use links of higher latency).

and

To obtain a y-enforceable flow f for an instance with heterogeneous players,
we combine Lemma 1 with Theorem 4 and apply [6, Algorithm 1]. Specifically,
we first ignore player heterogeneity and compute, using Lemma 1, a y -enforce-
able flow  and the corresponding modification I’ so that f is a Nash flow of

the modified game G" when all players have the minimum risk-aversion factor
a' =1. Assuming that the links are indexed in increasing order of their latencies
in f, since f is y-enforceable with risk-aversion factor a' =1 for all players,
Theorem 4 implies that for any used link 7, (1+y)Z,( )=/, (f).

Next, we greedily allocate the heterogeneous risk-averse players to f, taking
their risk-averse factors into account, so that each link i receives flow f, and
property (ii) in Theorem 4 is satisfied. Finally, we use [6, Algorithm 1] and
compute a ¥ -modification that turns f into an equilibrium flow for the modified
instance with heterogeneous players. This is possible because, by construction,
f satisfies condition (i) of Theorem 4. Moreover, since f satisfies the properties
of (i) and (ii) in Lemma 1, the PoA of f can be bounded as in Theorem 1.
Hence, we obtain the following.

Theorem 5. Let G be a y-modifiable instance on parallel-links with heteroge-
neous risk-averse players. Given the optimal flow of G, we can compute a fea-
sible flow f and a y-modification T of G in time O(mT,,), where Ty, is the
complexity of computing the Nash flow of any given y-modification of G with
homogeneous risk-averse players. Moreover, the PoA , under y-modifications,
achieved by f is upper bounded as in Theorem 1.

5. Modifying Routing Games in Series-Parallel Networks

In this section, we consider y-modifiable instances on series-parallel networks
with homogeneous players and generalize the results of Section 3. We proceed
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to generalized Lemma 1 to series-parallel networks. The proof is based on an
extension of the rerouting procedure in Lemma 1 combined with a continuity
property of y-enforceable flows in series-parallel networks.

Lemma 2. Let G=(G.,/,r) be a y-modifiable instance with homogeneous risk-
averse players on a series-parallel network G and let o be the optimal flow of G.
There is a feasible flow f and a ¥ -modification I’ of G such that

(i) f is a Nash flow of the modified instance gf .
(i) for any edge e, if f, <o,,then y,=0,andif f, >o0,,then y,=y.

Using the properties (i) and (ii), we show that the upper bound on the PoA
in Theorem 1 extends to the y -enforceable flow f* of Lemma 2 and to the PoA,
of the best y-enforceable flow in series-parallel networks with homogeneous
players.

Theorem 6. For ¥ -modifiable instances on series-parallel networks with homoge-
neous players and latency functions in class D, PoA (D)< p, (D).

Given the optimal flow of an instance G on a series-parallel network, we show
how to compute a y-enforceable flow f and the corresponding modification so
that we achieve a PoA at most p, (D). Given o, the running time is determined
by the time required to compute a Nash flow of the original instance.

We first determine whether the optimal flow o is y-enforceable. To this end, we
remove from G all edges unused by o and check the feasibility of the following:

0<y,<y, V used edges e M
Z(1+)/e)€e(o):£13?§)€p(o) Y used path p

eep

If the linear system (1) is not feasible, then o is not y-enforceable. Otherwise,
using the solution of (1) as y,’s for the edges of G used by o and setting y, =0

for the unused edges e, we enforce o as a Nash flow of the modified game gr.

If (1) is not feasible and o is not y-enforceable, we exploit the constructive
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nature of the proof of Lemma 2 and find a y -enforceable flow in time dominated
by the time required to compute a Nash flow in series-parallel networks.

Lemma 3. Let G be a y-modifiable instance on a series-parallel network with
homogeneous players. Given the optimal flow of G and any £>0, we can
compute a feasible flow f and a y-modification G" of G with the properties
(i) and (ii) of Lemma 2 in time O(szNE log (r/g)), where 7. is the complexity
of computing the Nash flow of any given y-modification of G and ¢ is an
accuracy parameter.

6. Parallel-Link Games with Relaxed Restrictions

In this section, we consider ( p,y)-modifiable games on parallel links with hetero-
geneous risk-averse players. Observing that any y/%-modification is a (p,j/)
-modification for a (p,;/)-modifiable game, we next show an upper bound on
the PoA under such modifications.

Theorem 7. For any (p,;/)-modifiable instance G on m parallel links with
heterogeneous risk-averse players and latency functions in class D, we have

that PoA”(G)<PoA, (G)<p, (D), where y,=y/ m .

The above bound is tight under weak assumptions on the class D of latency
functions. More specifically, we say that a class of latency functions D is of
the form D, if (a) ¢ is continuous and twice differentiable in (O,+oo),
(b) ¢'(x)>0,¥xe(0,4+0) or ¢ is constant, (c) ¢ is semi-convex, i.e. x{(x) is
convex in [0,4+0) and (d) if /€D, then (£/+c¢)e D, for all constants ceR such
that forall xeR,,, £(x)+c>0.

Then we obtain the following.

Theorem 8. For any class D of the form D, and any & >0 there is an instance
G on m parallel links with homogeneous players and latency functions in class
D, so that PoA? (G) > p, (D)—¢, where , =y /&m.
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Proof. We consider an instance Z , with m parallel links, where the first m—1
links have the same latency function /€D (to be fixed later) and link m has

constant latency (1+7I)E(LJ, where y, =y /X/m—1. The instance has ho-

mogeneous risk-averse players with risk-aversion a' =1. Also we let y, =7//%.
The proof is an immediate consequence of the following three claims:

Claim 1. For every m>2 and any latency function /eD with f(O):O,
PoA’(Z,)=PoA, (Z,). l.e, Claim 1 states that the best ( p,y)-modification for
the instance Z  is the modification that splits y evenly among the first m —1 edges.
The proof follows from an application of KKT optimality conditions.

Claim 2. For every m>2 and any &>0, there is a latency function /7,
with ¢, (0)=0 such that setting /=/¢_,  in the instance Z, results in
PoA, (Z,)=(1-p, (D))" —&/2. The proof of Claim 2 is similar to the proof of
Theorem 2.

Since ¢, ,,(0)=0, we can combine claims 1 and 2 and obtain that for any m>2

and anys >0, PoA’(Z,)> p, (D)-¢/2, if we use the latency function 7, , .

Claim 3. For every class of latency functions D, any £€>0 and any y, there
exists an m, >2 suchthat p (D)= p, (D)-s/2.

The proof is based on the fact that y, tends to y, as the number of parallel links
m grows. Therefore, for any &> 0, there are an m_ and a latency function £,

such that PoA” (I )2 p, (D)-¢.

g

7. Conclusions and Future Work

Although the model we proposed is simple and general, our results mainly
apply on specially structured networks. The main question to answer is whether
we can we leverage the uncertainty in more general networks and draw meaning-
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ful results on improving the price of anarchy.

Especially for the case of heterogeneous players one can wonder if this con-
nection between the performance guarantees of the homogeneous and hetero-
geneous flows remains the same when we face more complicated networks than
parallel arcs. We have (almost) proved that for extension-parallel networks the
performance guarantee we can attain is the same for both homogeneous and
heterogeneous players but even for the case of series-parallel networks the
answer is vague.

Another very interesting question is whether we can exploit the uncertainty to
improve network’'s performance in cases where the path costs are not additive,
like in the model presented in [7].
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Alrapolpacpog Mopwv we Yinpeoia :
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AcUppuata Aiktua Mepmtng Meviag

Mapla-Euyevia |. zeCwvakn (mxezonaki@di.uoa.gr)

MepiAnyn

H mapouoa epyacia €xel WG oTdOXO TNV EKTEVH ETLOKOTINGN, MEAETN KAl AVAAU-
On TWV CUCTNPATWY KWWNTWV ETILKOWWVLWY 5n¢ yeviag (5G) ou avapevetal va
avamtuxBouv ota emopeva £Tn KaBwg kat Tnv avamtuén Along yla to SlapoLlpacpo
padlomopwv (Radio Resource Sharing - RRS) og &iktua 5G. META TNV TIPOCEKTLKN
HEAETN €VOC TIPOTELVOUEVOU TIPWTOKOAAOU SLapolpacpol TIOpwVY TO OTtolo BETel
OTO €MIKEVIPO TNV TIAEUPA TOU SLKTUOU, TIPOTEIVETAL €Va VEO POVTEAO SLAYOpE-
TIKAG TIPOOEYYLONG, BEToVTag OTO €MIKEVIPO TNV TIAEUPA TNG KLVNTIG OCUCKEUNC.
To v AOyw PovTeAo Suvatal va EMLTUXEL TNV avaBeon TWV TIEPLOCOTEPWY EVBLVWV
OTa KLNTA KAt TNV €Aa)LoToTIolnon tng MPocapHoyrg TOU SLKTUOU OTLG AVAYKEG
TWV KLVNTWV CUOKEUWV.

AEEELC KAELOLG: ZUCTNPATA ETIKOWWVLWY TIEPTITNG YEVLAC, ALAUOLPACHOC PASLO-TIOPWY,
AlKtuwon Baoclopevn oto Aoylopko, [lpoogyylon amo tnv TAEupd Tou SLKTUOoU,
Mpoogyylon amo TNV TAEUPA TNG CUCKEUNC.

ETBAETIWV

Aalapoc Mepakog, Kabnyntng
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1. Ewocaywyn

Ta teAeutala xpovia €xel onuelwBel paydaia dvodog Tou KAASOU TwV KLvNTwv
ETILKOLVWVLWY, a@oU N XPHon TwV KLVNTWV CUCKEUWV £EATAWVETAL PE TaXUTATOUG
puBUOUG Kal avapevetal va ocuveyxioel tn dleloduon tng otnv Kabnuepwvotnta
TWV KatavaAwtwyv. H oAogva augavopevn {Ntnon yla VEEG UTINpeoieg kat un-
AOTEPOUC pUBPOUC petddoong, to cloud computing Kal n ocUVEeon TIOAWY Kal
SLAPOPETIKWY TUTIWV CUCKELWY, WBOUV Ta onuePLVA SIKTUA KLVNTWV ETILKOLVW-
VLWV 0Ta 0pLa TWV AVTOXWV TOUC.

To yeyovog autod kablotd avaykaia tnv avamtuén VEWV SIKTUWV PE auENPEVEG
SuvVaTOTNTEG, WOTE va lval Suvatr N eEUTINPETNON TWV XPNOTWV HE TNV KAAUTEPN
Suvatr) ToLOTNTa UTtnpeotag, Tn PIKPOTePN Suvatr] KabuoTtEpnaon Kal Tautoxpova
TN BeAtiotn aglomoinon twv TOpWV Tou SikTUou. MapaMnAq, evw N avaykn yla
ATIOKTNON VEWV TIOPWV augavetal, aAd gavtadel aduvatn kat {nuLoyova, mapa-
TnpoULVTAL PALVOPEVA KATAOTIATAANCNG TWV éN UTIAPXOVIWY TIOPwWV. H Katavoun
KaL Xpron Twv SLKTUAKWY TIOPWV HE ATOS0TIKO TPOTIO Kpilvetal ¢ntnua uPnAng
onuactag kat otdxog TG epyaciag slvat n peAETn pooeyyloswy yla tnVv Steubetn-
Ol ToU KaBwg Kat N TPoTach EVOG VEOU TIPWTOKOAAOU.

TXETIKEG MEAETEG €xouv Sle€axBel amd tov M. Yang kat tnv opada tou [1],
OTIoU €L0dyetal pia OpenRAN apxLtektovikn n omotla Bacidetal otnv texvoloyia
SDN Kal EKPETAAEVETAL TA TIAEOVEKTNHATA TWV €TEPOYEVWV SIKTUWV. ETiong, n
XpNon tng ev Aoyw texvoAoylag wg PECSO yla TNV amAormoinon tng dlaxeiplong
TWV KUPEAWTWY SIKTUWV avalletal otnv €psuva tou K. Mevtikovon Kat Ttwv
ouvepyatwyv tou [2]. Mia amAr) AVon yla To SLapoLpacpo TOpwy £xeL TIPOTABEL
amod TNV epeuvnTkn opada tou J. Panchal [3]. H mpdtaocn autr) agpopd otnv
mtapoyr) on demand uTTOSOUNG KAl SLAPOLPACHOU PACHATOG PETAEU SLAPOPETLKWV
TIAPOXWV. AKOUN, CUYKEKPLUEVN QPXLTEKTOVLKI SLKTUOU QAAA KAL CUYKEKPLUEVO
TIPWTOKOA\O onuatodooiag yla tnv uAotoinon tou Slapolpacpol Twv pasdlo-
TOpWV €xouv Tpotabel amd tov A. ZeVvAKn KAl TOUC OUvepydteg tou [4].
H ouykekplpevn TpoogyyLlon €0TLACEL TIEPLOCOTEPO OTNV TAEUPA OTOU SLKTUOU
(network-centric approach), énAaér to Siktuo elvaL n ovtotnta n omoia ava-
AapBavel Tnv mAsloPneia Twv euBuvwy yla tnv vlotoinon tng unnpeoiag RRS.
H teAeutala epyacia peletnbnke Ste€odika kat pe Bdon autrh, otnv mapouoca
gpyaocia mpotelveTal Eva TIPWTOKOAO €VAANAKTLKNG TIPOCEYYLONG Kal SLeEayetat
OUYKPLTLKA avAAuon PeTagl Twv U0 Tipooeyyloswy.
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2. Npocgyylon amo tnv MAgupd tou Atktuou (Network-Centric
Approach)

‘Eva oloTnUa KwnIwv EMKOWWVIWY 5nC¢ yeVLAg avapéveTal va amoTeAel
ouUVOUAOPO aTiO OPXLTEKTOVLKEG OCUCTNHATWY TIOAQLOTEPWY YEVEWV Kal OXL
pla eVTEAWG vEa avegapTNTn APXLTEKTOVLKN, TOUAGXLOTOV WG TIPOG TO (PUOLKO
emimedo. AMWOTE, aKOPN KAl Td CNUEPWVA CUCTNHATA KLVNTWV ETILKOWWVLWY
elval etepoyevn, amotedouvtal nAadr amd cuvduacpd SIKTUWVY SLAPOPETLKWY
QPXLTEKTOVIKWY. Eva QVTLTPOOWTIEUTIKO TIAPASELYPa QPXLTEKTOVIKNG 5G arto-
TeEAe(Tal amod eva cvotnpa PakpoKuPeAwv LTE-A, €va ocluoTnua HKPWVY Kue-
Awv (picocells 3 femptocells) LTE-A, €éva Wi-Fi cUotnua kat €va amopovwUEVO
Access Point (AP). H epyacia [4] tovideL OTL amattouvtal KATOld aKOpn vea
APXLTEKTOVLKA OTOoLXEla KAl AELTOUPYLKOTNTEG TIOU EeeUyouv amod tn Sopr tng
APXLTEKTOVLKAG TWV cuotnudatwy LTE-A kat Wi-Fi étol wote va uttootnpuxBel n
TIPOTELVOHEVN L&EA TOU Slapolpacpol Twv pasdlo-Topwy yld Ta cuctnuata 5ng
YEVLAG.

H mpwtn apxltektovikn €&EALEN TOU €Loayetal €ival 0 €EOTIALOPOC KATIOLWV
amo toug (H)eNBs kat APs (pue HeNBs va cupBoAilel toug eNBs tou olklakou
SlKTUoU KABe ocuvdpopnth) pe duvatotnteg texvoloyiag SDN, wote va pmopouv
VA KATAVEPOUV TO TIAEOVACHA TWV PaSLOTIOPWY TOUG OE XPHOTEG OL oTtoloL lval
EYYEYPAUPEVOL Ot SLaWOopPeTIKO &lktuo. Autog o tumog (H)eNBs kat APs
avagépovtal wg (H)OpeNBs kat OpenAPs avtiotolya. lNa va emiteuxBel kATl
TETOLO ELOAYETAL £va ETILTIPOOOETO eminedo otn oto(Ba MPWTOKOAWY, TO oTolo
KaAeitat Hypervisor eminedo. To ev Aoyw eminedo mapepBANETAL avAPeca oto
(PUOLKO €TiiTtedo Kal oTa avwtepd Tou kat ggumnpetel toug (H)eNBs wote va
€LKOVLKOTIOL)OOUV TOUG (PUOLKOUG padLoTiIOpoUG TOUG. MPOKELPJEVOU va PTIopEL
Va AELTOUPYNOEL OWOTA To emimedo Tou Hypervisor, €l0dystal pla €mMUTAEOV
Suvatdtnta otoug (H)OpeNBs. Mpodkeltat yla tn duvatotnta va Snuloupyouv
TIOAATAQ OTLYPLOTUTIA AOYLOPLKOU arto Tto SeUtepo eTinedo tng otoifag mpw-
TOKOMWV TOUG Kal Tavw. KdaBe teTtolo OTLyPLOTUTIO ovopddstal €LKoVIKO eNB
(virtual eNB - VeNB), kat £xeL Tn SuvVaATOTNTA VA TIPOCOUOLWVEL TN AELTOUPYLKOTNTA
evog (H)eNB o omolog avrkel og SLapopeTko SiKTuo, KaBwg kat va dltacuvdestat
0to 8(KTUO KOpPOU TOU OLKLAKOU SLKTUOU pECW €VOG tunnel Tou tpitou emumedou
NG oto{Bag MPWTOKOAWV.

Mia akOPn apXLTEKTOVLKN KAl AELTOUPYLKN KalvoTopia Ttou TIpoTElVETaL va eLoa-
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xBel mpokelpevou va ulomolnBel n duvatotnta RRS elval n eykatdotacn plag
ovtotntag 1ou Ba Slabetel To poAo eheyktry SDN kat Ba ovopddetal pdaktopag
SDN (SDN Agent) oto &iktuo kaBe mapoyou. Evag SDN Agent sivat uttebBuvog
yla TNV Kevtplkn slaxeiplon tng dnuioupytag VeNBs kabBwg kat yla tnv mpooap-
poyr Twv ToALTIKWY RRS oto eminedo Hypervisor Tou tapdxou 0Tov 0OTtolo avhKeL
avaloya pE Ta altPata OXETKWY Pe RRS Twv GA\wv Ttapoxwv. Emiong, o SDN
Agent elval ETMLPOPTLOPEVOG Pe Tn Slatripnon plag o@atpLkrg eLkovag tng katdota-
ong Tou SLKTUou Tipocaocnc.

To teAeutaio otolyelo ou avagepetatl OtTL lvat anapaitnto va mpootedel otnv
€V AOYW QPXLTEKTOVLKA €lval n ovtotnta mou kaAeitat SDN Server. Mapd Tto
YEYOVOC OTL KABe SDN Agent elvat eEAeyKTr¢ 0To S(KTUO OTIOU Elval EyKATECTNHEVOC,
o SDN Server glval utteUBuLVOCG yLa tnv vAotoinon tng duvatotntag RRS avapeoa
OTOUC SLAYOPETLKOUC TUTTOUG SLKTUWVY amod ta otola amoteAeital to 5G diktuo.
O SDN Server cUMEyeL TTANPOYOPLEG OXETIKA HE TN SlabeoLpotnta mopwy ava
TIApox0o SLKTUOU, TIAPAKOAOUBEL TNV KATACTAON TWV SLAPYOPWV AELTOUPYLWY TWV
SIKTUWVY, €EUTINPETEL TNV EKTEAEON OAWV TWV aTAPAlTNTWY AELTOUPYLWV YyLa TLG
XPEWOELG TWV CUVSPOUNTWY KAl EAEYXEL TLG ETILITTWOELG TIOU EVEEXETAL VA TIPO-
KUPOUV aTto TLG UTIOYEYPAPHEVEG CUMPWVIEG yLa TIAPOX UTINPECLWVY PETAEL TwV
TapoXwv (SLAs). TéAog, o SDN Server prmopel emumAéov va mai&el to poAo tou
PUBULOTN Yyl TG XPEWOELG TWV OUVEPOUNTWY, ETILTPETIOVTAC OTOUG SLKTUO-
KOUG TIapOX0UG VA OUVAYWVLOTOUV O€ TIPAYHATIKO XPOVO yLld TNV KATavoun Tou
@acpatod. Mapakdtw avamapiotatal oxnPatika n popen tng network-centric
APXLTEKTOVLKNAG.

Ewkova 1: Network-centric apXLTEKTOVLKA
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OewpWVTAG TNV TAPATIAVW APXLTEKTOVLKN, N €peuvnTLk epyacia [4] mpotel-
VEL €va TIPWTOKOAO RRS B¢tovtag wg emikevtpo to (6o to Slktuo (network-
centric approach) kat poodlopiletal emakpLBwg N por) tng onuatodociag mou
amatteitat ylwa tnv vAotoinor tou. H ev Adyw onuatodooia &ekwva va mpaypato-
TIOLELTAL YL TIPWTN QOoPA OTAV Pia KLvNTr CUCKEUN TIOU €lval eyyeypappevn os
€va SLKTUOKO Ttapoxo A Kal egumnpeteital amod evav eNB TIoU avrkeL 0€ QUTOV
peTaepetal oe vav OpeNB Tou avhkel o€ evav AANO SLKTUOKO TIapoxo B, pe
dA\a Adyla otav Tpaypatoroteitat pia petartoptr) (Handover - HO).

Q¢ mpwto BrApa tng Sladikaciag onuatodooiag peca oto Siktuo, o eNB tou
OLKLAKOU SLKTUO Tou €EUTINPETEL TNV KLVNTr OUCKeun {nta amo autr) va Tpay-
HATOTIOLOEL €va OUVOAO aTtO TIPOOSLOPLOUEVEG (PUOLKEG PETPNOELG, OTEAVOVTAG
NG éva prvupa dlapdpywonc petpnoswv «Measurement Configuration». Qg
amavinon OTO HPAVUMA auto Kal w¢ 8eUTEPO PBrjpa Tng onuatodootag, n Kwntn
OUOKEUN amooTteAeL otov eNB Ta amoteAeopata Twv &V AOYwW HETPrOEWV Kal
oUPYwva pe autd o eNB amopaoilel eav amatteitat HO oe kamowov OpeNB.
Teétolou tUMou HOs elval Baclopévol otnv €lkovikoTolnon SLKTUou, €@Ooov
gvSEXETAL Va TpaypatorolnBel peta@opd KVNTAG CUCKEUNG aKOpPA Kal o€ otab-
HO Baong dAAou SIKTUAKOU TIapOX0U, CUVETIWG avagepovtat ws NV-HOs. Av ta
KpLTtpla mou gyouv tebel yla evepyortoinon plag NV-HO kavorolouvtal, TOTeE
0 OLKLaKOG eNB emikowvwvel pe tov SDN Agent Home mipowBwvtag Tou OAEG TLG
arapaltnteg MANPOYOopPLeG OXETLKA PE TNV KLVNTI CUOCKEUN), CUUTIEPIAAMBAVOE-
VWV TWV PETPMOEWVY TIOU QUTH) TIpaypatoToinoes Katd tnv evapén tng dtadlkaotag.
Me tn oslpd tou o SDN Agent, StaBétovtag o@alpikn amoyn OXETIKA PE TNV
Katdotaon tou Sktuou, tpoadlopilel tov OpeNB tou &gvou Ttapoyou (TTapoxog
B) o omolog kavoTolel €va oUvoAo amod Tpokaboplopeva kpLtipla Baclopéva
OTNV ELKOVLKOTIOLNGN Tou SLkTUoU yla tn Anyn andgaong.

ApoU AnwBel n mpoavayepBeioa amoaon, o SDN Agent Home otéAvel otov
SDN Agent Host (6nAaér) otov SDN Agent tou &Evou Ttapoxou) eva aitnua yla
TpooBaon otov ev Adyw OpeNB, to omolo ovopaletatr OpeNB Access Request
Kat TEEPLAAMBAVEL TNV TAUTOTNTA TOU OLKLAKOU Ttapodxou (SnAasr Tou Ttapoyou A),
TNV tautotnta tou OpeNB ToU TIPOCSLOPIOTNKE WG KATAANAOG KaBwg Kal
ottoLadnmote MAnpowopia oxetidetal PYe TA XPAKINPLOTIKA TWV CUVSECEWV TNG
KLVNTNAG OUOKeUNG ol ottoleg Bplokovtal oe €E€ALEN. O Eevog apoxog B Tioto-
ToLel OTL TO eLogpyOpeVO altnua yta NV-HO ocuvdadel pe tig oup@wvieg SLA Tou
EXOUV oLVAYBOEL PeTAEL TWV U0 TIAPOXWV Kal ot cuvexela o SDN Agent Home
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ipowBel To OpeNB Access Request otov OpeNB mou mpoodloplotnke, o omol-
0G amo@alvetal OXETKA Pe TN SuvVATOTNTA TOU N OxL va eEuTNpEToeL puia véa
olvéeon.

ItV meplMTwon €MLTUXOUG amodoxng tng oUVEEoNG PE TNV KWNTr CUCKEUN, O
OpeNB etbototel tov SDN Agent Host otL StaBétel tn duvatotnta va eEutnpe-
TNOEL TIG OUVSEDELG TNG KLVNTNG OUCKEUNG HECW €VOG pnvupatog emiBeBaiwong
«OpeNB Access ACK, o omolog pe tn oelpd tou amavtdel otov OpeNB pe gva
urpvupa «VeNB instance request» yla Snuloupyla evog €LKOVIKOU OTLYPLOTUTIOU
VeNB to omolo Ba aglepwbel otov owklakd Tapoxo. Otav o ev Adoyw OpeNB
S5€OpPEVOEL TO OUVOAO TWV ATIALTOUHPEVWY TIOPWV KAl SNPLOUPYNOEL TOTILKA TO
otlypLlotutio VeNB yla Tov OlKLako TIapoxo, emiBeBatwvel Kat TG SU0 TOU AUTEC
evepyeleg otov SDN Agent Host. Ztn ouveyela, o SDN Agent Host atteital yla tnv
eykaBidpuon evog tunnel emumedou Siktuou (L3 tunnel) petagl Tou OTLYULOTUTIOU
VeNB 1ou €xeL SnuloupynBel otov OpeNB Kal Tou SLKTUOU KOPHOU TOU OLKLAKOU
TIapOxou, OTOV OTIOL0 TAUTOXPOVA ETTLRERALWVEL KAL TN SECPEVON TWV TIOPWV TIOU
artattouvtav. To enodpevo PBripa mpaypatomnoleital and tov SDN Agent Home,
0 orolog amooTtéMeL OTLG ovtotnteg MME/S-GW tou olklakoU Ttapdyou &va
altnua «L3 tunnel configuration request» yla tn SLAUOPPWON TOU &V AOyW
tunnel, Tto omolo kat eykabidpuetat peta&l Twv MME/S-GW tou olklakoU SLKTuou
kat tou VeNB 1ou SnuioupynBnke otov OpeNB.

Yotepa amo tnv eykabidpuon tou L3 tunnel, o VeNB mpowBel &va prjvupa
«NV-HO ACK» otov eNB tou otkLakoU Ttapoyou HECW ToU €V AOYW tunnel, To otmolo
otav mapaAdBet o eNB amooteAel evtoAn petamopmng (HO command) otnv
KLVNTr] OUOKEUN. ZNPELWVETAL OTL €WG TN CUYKEKPLUEVN OTLYHN, N KWWNTH CUOKELN
Sev elxe AAPeL kavevog €ldoug evnuépwaon yla tn onuatodooia Tou eKTEAOU-
VTAV KAl yLa Tn SLEKTIEPAlWON TWV ATIALTOUPEVWY EVEPYELWV YLA TN PETATIOUTIN).
TEAOC, N KLVNTI OUOKEUN €KTEAEL TLG KAOOLKEG SLASLKACLEC EKTEAEONC pilag peta-
TIOMTING Tpog tov OpeNB, apol Bewpel tov VeNB mou €xeL eykatactabel otov
OpeNB oav kamotov eNB 0 omolog avrkeL 0To §KTUO TOU OLKLAKOU TOU TtapOxou
(6nNAaédn) tou Ttapoxou A).
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3. Mpoogyylon amno tnv NMAsupd tng Zuokeung (Device-Centric
Approach) kat Mpotacn MNpwtokoAAou RRS

H network-centric tpocgyylon RRS, apd tnv amoTeEAECUATIKOTNTA KAl Td TIOAAQ-
TIAQ TIAEOVEKTNUATA TNG, €TLBAPUVEL CNPAVTLKA TA SIKTUA TWV TIAPOXWV HE ETTL-
pooBetn onuatodooia, KABWG oL OAEC OL ATOPATELG OXETIKA PE TNV eykaBidpuon
KAL ATTOSECEUON TWV ELKOVIKWY 0TaBpwv Baong, kat teAka n (&la n eykabispuon
Kat armodéopeuon, AauBavouv xwpa ota Siktud Twv ouvepyalopeVwY TIApOXWV.
KdtL tetolo, Sivel pe Tn o€Lpa TOU TO evauopa yla e€eupeon piag Auong e to iélo
TEXVOAOYLKO UTIORaBpo, n omola, wotdoo, Ba povtidel yLa tn pelwon tng JeTadt-
S0uevng onpatodootiag. ZTnv kateuBuvVoN AUt N TIPOCOXT OTPEPETAL OTLG KLVNTEQ
OUOKEVEG. Me BdAon tn vea autr) T(POceyyLon, To onuelo andaong petatoridetal
aTo To otabpod BAcng oTnV Kvntr) cUoKeLr), KaBwg N cuokeur Ba elvat autr) Tou
HE KPLTAPLO TLG PETPNOELG TNG, OAAA KaL TIANPOYOPLEC TIOU TLG TIPOCYEPOVTAL ATIO
To &iktuo, Ba AapPBavel tnv amoacn yla TNV €§UTNEETNON TNG Ao TO oTabuo
Bdaong, karolou AAAoU TtapoOxou.

H mpotewvopevn dopr Tou Bewpeital otnv Tapouvoa epyacia OTL TIPETIEL VA KO-
AOUBNOEL N APXLTEKTOVLKN Tou SLKTUOU yla TNV UAotioinon tou device-centric
HOVTEAOU SLaEpeL O apKeTa onpela amd tnv avtiotolxn tou network-centric.
Y& avTlOLaoToAn pe tn network-centric, otn device-centric TpoogyyLlon oL otab-
pol Baong twv dlagopwy TUTIWV SIKTUWV (ouoTAPATA PAKPOKUPEAWY LTE-A,
ovothpata Pkpwv KuPedwv LTE-A, cuotripata Wi-Fi kat pepovwpéva AP) Sev
efomAidovtal pe Suvatotnteg texvoAoyilag SDN, oUte kai €lodystat eminedo
Hypervisor otn otoifa mMpwtokOAwWY Twv otabBuwv Bacng. Opwg, elval anapai-
TNTOG 0 €EOTIALOMOG TWV KLVNTWV OUCKELWV PE Suvatotnteg texvoloylag SDN,
€TOL WOTE PEOW KATAAANANG TIPOCAPHOYNG VA PTIOPOUV va cuvéeovtal o€ 8La-
(POPETLKOUG Ttapdxoug tnV (8la otiypr). O VEOG autog TUTIOG KLVNTWY CUCKEUWV,
oL omoleg avagepovtal wg OpenUEs, €xouv tnv kavotnta va Slaywpilouv
TO (PUOLKO TOUG emiTedo amod Ta avwtepa eminmeda tng otolBag TPWTOKOAWV.
Mo va emiteuyBel KATL TETOLO €LOAYETAL €va emPoOoBeto eminedo otn otoifa
TIPWTOKOAMWY, To oTtolo KaAsitat Hypervisor emimedo. To ev AOyw eminedo Ta-
pEPPBANETAL AVAPETA OTO PUOLKO ETILTIESO KAL OTA AVWTIEPA TOU Kal eEUTINPETEL
Toug UES WOTE va €LKOVIKOTIOLOOUV TOV €QUTO TOUG. MNpoKelEVoU va uTtopel
va AELTOUPYNOEL OWOTA To emimedo Tou Hypervisor, €lodystal pla €mUTAEOV
Suvatotnta otoug UEs. MpokeLtal yla tn suvatotnta va snuloupyolv TIOAAATIAG
OTLYPLOTUTIA AOYLOMLKOU amid To SeUtepo eTineSo tng otolBag TPWTOKOAWY
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TOUG KaL TTAVW. KABe teTolo otlypLotutio ovopadetal tkoviko UE (virtual UE - VUE),
KaL €xeL TN SuVATOTNTA VA TIPOCOHOLWVEL TN AELTOUPYLKOTNTA €VOC TIPAYHATIKOU
UE o omolog Ba pmopel va ocuvééetal tautoxpova o€ SLAPopPETKA Siktua.
Ertlong, amatteitat kat €dw n utapgn SDN Agents kat SDN Server. H oxnuatikn
avamapAactacn TNG HOoPYrg TNG APXLTEKTOVLKNG TIOU TipoTelveTtal @aivetal
TIApaAKATw.

Ewkdva 2 : H tpotewvopevn apxLteKTovLKn (device-centric)

MLa Ttnv uttootrpLEn evog device-centric TTPWTOKOAOU Tipocdloplotnke N anapali-
NN pon onpatodooiag. H ev Adyw onuatodooia &ekva va mpaypatoToleital
yla Tpwtn @opd otav pila KNt COUoKeun TIou elval eyyeypaupévn o€ €va
SIKTUAKO TtApoxo A kat eEutnpeteital amo evav eNB Tou avikel og autov Kplvel
amapaltnTo va anokKtnoeL cuvdeon pe kamolov eNB 0 oTtolog avrkel o€ evav AAAO
SLKTUOKO Ttdpoxo B. Ztn device-centric TpoogyyLon, kuplapyng onpactiag eivat o
pOAog tou SDN Server, o omtolog amoTteAEL To onpelo avapopdg yla tnv uAotoinon
NG umtnpeotiag RRS kat Adyw TnNg GUVOALKAG ELKOVAG TWV ETILPEPOUG SLKTUWV aTtO
Ta ottola amoteAeital to Siktuo, dLabétel augnueveg appodlotntes. Mia amo tig
KUPLEG appOSLOTNTEG TOU elval n ekywpnon €vog Povadlkol avayVwpLOTLKOU-
TaUTOTNTAG (id) OTNV KNt OUCKEUN OTAV aAuTH €logpxetal o€ &evo SIKTuo,
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ETILAEYOVTAG ATIO €va OUVOAO id TIou SLabetel yla KABe SLAPOPETLKY TIEPLOXT] TNG
uTtoSopn G Tou SLlktuou (Tracking Area -TA).

Q¢ MpwTOo PBrpa TG TPOTELVOUEVNG Sladlkaciag onpatodooiag peoa oto SIKTuo,
SDN Server {ntdel amo tov SDN Agent kaBe Slktuou va tou amooteiAel pia Alota
pe ids Ta omola SLABETEL yLa EKYWwPNON O VEEG KLVNTEG CUOKEUEG TIOU ELOEPXOVTAL
0To SIKTUO Tou. Alatnpwvtag TG ev AOyw Aloteg, o SDN Server elval TAeov o€
Beon va avaAauBavel ekeivog tnv ekxwpnon ids ota UEs avtl ywa tov ekdoto-
te SDN Agent kaBe @popa (Bripa 1). Qg amokpion oto aitnua tou SDN Server, o
kdBe SDN Agent mipaypatorolel dtadikacta NV SLA Monitor wote va eAeyEeL TLG
OUPQWVIEG TIOU €XeL ouvaeL Pe AAAOUG TTapodxoug (Brpa 2) KaL otn ouvexela
amooTENEL TN Alota pe ta ids (Brua 3). ‘Otav kpBel amapaitnto, o eNB tou
OLKLOKOU SLKTUOU TIOU €EUTINPETEL TNV KLvNTH CcuoKeLr ¢NTtd amo auth va mpay-
HATOTIOLNOEL €va CUVOAO aTiO TIPOOSLOPLOPEVES (PUOLKEC PETPOELG, OTEAVOVTAG
NG €va prvupa «Measurement Triggering» (Bripa 4). H kwntry ouokeur otn
OULVEXELQ TIPOXWPAEL o Sladlkaola PETPAOEWY Kal Pe BAcn ta amoteAéopata
autwv amoaoctlel eav Xpeladetal va SnULOUPYNoEL oUVEECN HE KATIOLOV GAAO
otabud Baong (BApa 5). Eav pla tetola ouvdeon KplBel amapaltntn, n Kwnn
OUOKEUN amooTeAAeL pia Alota pe 6Aoug toug eNBs Tou Kpivel kKatdAAnAoug yla
va tnv utnodexBolv otov SDN Server (Bripa 6), amo tov omoio {ntdeL va eAey-
el pe ToLoug amo Toug ev Aoyw eNBs uttdpyel kamoia SLA pe to Siktuo A oto
oTtolo avAKeL N cuokeur). Q¢ amavinon oto altnua tng cuokeung, o SDN Server
poxwpdel oe dtadikaota filtering (g Atpapiopatog) kat amootéAeL Tn Alota Twv
eNBs pe toug omoloug o Tdpoyxog Slktuou A otov omolo elval eyysypaupevn n
KLVNTI OUOCKEUN €XEL UTTOyeypaupevn karmola SLA (Bripa 7). H ev Adyw Alota &l
val duvatov va ETILOTPEPETAL OE PJoPPn EVOG Tilvaka otov ottolo Ba elval kata-
YEYPaAUpEVOL OAoL oL eNBs Toug oTtoloug aveWEPE N KLVNTH CUCKEUN oto Bripa 6
kKabwg kat pla evéelgn avtiotolyn otov kabéva amd autolg (yla Tapadslypa
€va bit to omolo Ba maipvel TG Tipeg 0 1} 1) n omtola Ba UTTIOSELKVUEL €AV UTTAPYXEL
) oxL karmota SLA peta&l tou mapdyou A KAl TOU TIAPOXOU OTOV OTIOLO AVHKEL
0 KABe eNB. H kwntr} oucKkeur Otn CuvExeELa, SLaBEtovtag TG TTANPOPOPLES
OXETLKA pE TG SLAS glval oe B€on va emAeEel amd tnv apykn Alota tnv omola
¢otel\e otov SDN Server oto Bripa 6 tov eNB o omoiog elval KataA\nAOTePOg
yla eKelvn Kal TOU OTIOloU TO SLKTUO E£XEL UTIOYEYPAUMUEVN CUPPWVLA PE TO SIKTUO
TNG OUOKEUNG. H ev Adyw @daon ARPng tng amdgpaong yla tov KatdAAnAo eNB
ovopaletat NV Decision Phase (Bripa 8). Metd tn Anyn tng amog@aocng yla tov
eNB mou Ba @uogevnoel to Kwvnto, o UE avagepeLl tnv amo@acr) Tou oTov
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SDN Server yvwoToTIOWWVTAG TOU Tov emmAeypévo eNB kat ¢ntwvtag Tou
€va TIpoowpLVo id pe to otolo Ba eLoeABeL oto veo Siktuo (Brpa 9). Zto onueio
autd o SDN Server evnuepwvel tov SDN Agent Home yla TO yeyovog OTL
TIPOKELTAL va TipaypatomownBel petamopty (Bpa 10) kal ekelvog amokpivetal
avtiotowya (Brua 11). Znuewwvetat ott o SDN Agent Home &gv yvwplle timota
yla tn dtadkacia PETATIOUTING TNG CUCKEUNG KAl EVNUEPWONKE POVO Alyo TIpLV
autr) mpaypatotrolnBel. AnAadr) to owklakd Slktuo Slatnpeital €KTOG TNG
Sladlkaciag tou HO kat amAwg AapBavel pla evnueEpWon TNV KATAANAN
XPOVLKI OTLydr). ZTn ouvexela, o SDN Server mpoxwpdel otn @don Id Selection
(BAua 12), 6nAadn emAeyel to id Tou Ba ekxwpnBel oTnNV KNty CUCKELN Kal
KatoTilv oteAvel otov SDN Agent Host altnua mpoofaocng otov emAeypevo eNB
TO omolo TepN\auPBaveL To id Tou €TTAEXONKE yla TNV KLVNTH CUOCKEUN KAl TnV
Tautotnta tou eNB 1ou Tipooadloplotnke wg KATAAANAoG (Bripa 13).

Mpw mpaypatomownBel aitnua ywa tn &éopeuon padlomopwv otov eNB, o
SDN Agent Host {ntdel and tnv MME tou SlKTtUou Tou va Tov €L80TIOLNOEL O€
neplmtwon mou ekelvn evtotiosl to mpoavayepBev id oto Siktuo (Brpa 14) kat
ekelvn amokplvetal pe éva prvupa emPBefaiwong (Bripa 15). ZTn cuvéxeLa Kat
apou oL Topol Ssopeutolv 0 eNB amooteAel privupa emiBeBalwong tng &¢-
opeuong toug otov SDN Agent Host (Bripa 17) to omolo mpowBeital kat otov
SDN Server (Brjpa 18). EKelvog PE TN OELPA TOU OTEAVEL OTNV KLVNTH CUOKEUN £va
attnpa dnuloupylag evog elkovikol otlyplotutiou VUE tou €autol Tng Wote va
SnuloupynBel n vea ouvdeon, vw TTApAAANAQ TNG YVWOoTOTIoLEL Kal To id To omolo
NG €XEL ekXwpnBel yla tn ouvdeon oto diktuo B (Brpa 19). Ito onuelo autd
TipaypatomoLeitat to aitnua ywa ouvéeon amd tov UE otov eNB tou &vou
SlKTUOoU, To omolo TephapPBavel kal to UE id (Bripa 20) mou elval amapaitnto
otov eNB wote va avayvwpioet tov UE wg 8o tou UE, nAadr eyyeypappevo
0TOo SIKTUO TOU. XTn ouvexela akoAouBel n ouvnBng SLadlkaoia PETATIOPTING
TIoU akoAouBeltal ota onuepva SlKTua KWNTWV ETILKOWWVLWY TIPOKELUEVOU
va eykataotabel n véa olvéeon petagl tou UE kat tou véou eNB. Ta teheutala
Bripata otn pony onuatodootag tng device-centric TpoosyyLong UOTEPA ATIO TNV
eykaBidpuon tng oluvéeong sivar n evnuepwon tou SDN Agent Host amd tnv
avtiotolyn MME OTL evtomiotnke oto S{KTUO KLvnTr cuokeun pe to dedopevo id
(BRpa 21), o omolog pe tn oslpd tou Tpowdel tnv eldomoinon otov SDN Server
KOL TOV EVNPEPWVEL OTL N SLadLlKkacia TNG PETATIOPTING EXEL OAOKANPWOEL (BAua 22).
H mtpotewvopevn pory onuatodootag amelkovidetal oxNUATIKA TTapakAatw.
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Ewkova 3 : To TIPOTELVOPEVO TIPWTOKOAAO SLAPOLPACHOU padLOTIOpwVY
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H mpotewvopevn pory onuatodooiag, Omweg TEPLYPAPNKE, KOAAUTITEL OAEC TLG
TIAPAPETPOUC OL oTtoleg TipEmeL va AnBouv umoyn. ‘Ocov agopd otilg SLadt-
Kaoleg xpEéwong, autég Ba mpaypatomolovvtal otov SDN Server, o ottolog €xovtag
AGBeL TNV evnuepwon amo tov SDN Agent Host o0tL evtomiotnke oto SIKTUO Tou
To id Tou ekywpnBbnke otov UE Ba miotomolel tnv mpaypatomnoinon tng Peta-
TIOMTING Kal Ba PTopEl va XPEWVEL TOGO TOUG TIAPOXOUG 00O KAl TO cuvdpounTn
Slkalta kat xwplg Kwduvoug TapatuTilwy. AgSopévou OpwWG OTL ta ¢ntruata
A0PAAELQG, XPOVLOHOU Kal KATavAAwoNnG eVePyeLag TIBEVTAL OTO ETKEVTIPO TWV
5G ouotnuatwy, Kplvetal amapaitntn n enavegEtaon tng TPOTEWVOPEVNG AU-
ONG TIPOKELUEVOU VA €QAPPOOTOUV BEATIWOELG TIPOG LKAVOTIOLNON €VEEXOUEVWV
KEVWV OTOUC TIpOavapePBEVTEG TOMELC.

OL €V AOYW BEATIWOELG TTApATNPOUVTAL KAL OTLG TIEVIE (PACELG TIOU ONUELWVO-
VTAL 0TA TETPAYWVA PE KOKKLVO Tteplypappa otnv Ewkova 3.2. Mpwtiotwg, xouv
apalpedel ta BrApata evnuepwong tou SDN Agent Home amd tov SDN Server,
OXETIKA PE TO eTkelgevo handover tng kwntrg ouokeung (Brpata 10 kat 11
otnv Ewkova 3.2). H apaipeon twv v Adyw Bnudtwv cuviotatal oto yeyovog OTL
apevog n UTapEn Toug SeV TIPOOCWPEPEL KATIOLA ETILTIPOCHETN AELTOUPYLKOTNTA
OTOV TIPOTELWVOHPEVO PNXAVLOHO, KABwG TO olklako Slktuo &ev elval amapaitnto
va evnuepWvETaL yla ta handovers pLag cuokeung mpog Eva Siktua, av BeRala
Bewpriooupe Tov SDN Server wg pla TMANpwWG €PTLOTN ovtotnta mou Ba SlaxeLpt-
OTel AVTIKELPEVLKA KAl PE OKEPALOTNTA TLG ETILKELPEVEG XPEWOELG YLA TLG UTINPECLEC
Tou Ba xpNnoLPoTIolnon N KWNntr) CUoKEUN WG PEAOG Tou &Evou Siktuou. O SDN
Agent Home, pdAlota, slvat Suvatov va pnv UTIAPXEL KAV OTO OLKLOKO SIKTUO
KOPHOU, KATL TIOU onuatvel OTL TO OLKLAKO SIKTUO akoun KL av &gV XpnoLUoToLel
SDN texvikeg bev eumodicel ta OpenUEs amo to va cuvdeboulv og Egva diktua.
ErumAéoy, ota TAaiola tng vEag TIPOTELVOUEVNG AUONG exouv agatpebel ta
BApata 13,16,17,18,19 tng Ewkovag 3.2, TTou agopouv TNV ATIOCTOAN ALTHHATWY
mpooBaong Tpog To emAeypevo eNB kal tnv S€0peucn padloTiopwy TPV TN
Snuloupyla tou VUE. H agpaipeon twv ev AOyw amd 1O PNXAVLIOHO, TOV PEPVEL
TILO KOVTA otn Sladlkacla PETATOPTIAG, OTIWG autn TpaypatoTmoleital petagu
otabwv Bdong tou (8Lou TIapoOxoU, EVEXOVTAC WOTOOO OE KATIOLEG TIEPLITTWOELG
Tov Kivéuvo énuwoupylag tou VUE, aA\@ TeAlkA TNV pn OAOKANpwon tng
HETATIOUTING, AOYyW evdeXxOuevNG EAeLPNG TTOpwY otov eTiAeypevo eNB. TeAog,
TpoTelveTal n eloaywyn plag emumpooBetng SikAeldag ac@alelag oxeTkd pe
Tn ouxvotnta katd tnv omola o {(6log o OpenUE umopet va mpoBaivel os Stadt-
kKaoleg handover, aA\@ KaL TOV HEYLOTO aAPLOPO TIAPAANAWY CUVEECEWV OF
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Slapopetika Slktua, katd TG oroleg €vag OpenUE kdavel xprion TOAAWV
Slapopetikwy ids. Me BdAon TG TIPOTEWVOUEVEG QANAYEG, N PEATIWHEVN pon
onpatodooiag Stapopwvetat OTIWE PaiveTal TTAPAKATW.

Elkdva 4 : To BEATLOTOTIOLNPEVO TIPOTELVOUEVO TIPWTOKOAAO RRS
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4. ZuykpLtikn AvdaAuon MNMpoosyylogwv KaL ZUPTEpACHATA

‘Exovtag meplypagel TG network-centric kat device-centric Tipooeyyloglg yla tnv
uAoTtolnon tng utnpeoiag RRS, mapakatw cuvoidovtal o€ Tiivaka N CUYKPLTLKN
avaiuon petagu toug.

Ewkdva 5 : ZuykpLTLKr avaAucn network-centric T(pWTOKOAAOU pE TO
TIPOTELVOHUEVO TIPWTOKOAAO

Yuvoyidovtag, ouumepaivoupe OTL N Topela TPog ta SlKTua TEUPTITNG YEVLAG
elval avamogeuktn, KaBwg n xprion KWwntwv CUCKEUWV aAAA kat n {Atnon o€
UTINPECLEG TIOAUMECLKWY €QAPPOYwWY OTwG Tto video Ba TpokaAéoouv €kpnén
otnNV Kivnon &€80PEVWY KAl CUVETIWG OTO (POPTO TWV ONUEPLVWY SLKTUWV
KLVNTWV ETILKOLVWVLWV.
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Yta mAalola TG avamrtugng twy SIKTUWV 5G eyelpeTal kat n avaykn ywa 0co
To duvatov kaAutepn alotolnon Ttwv SIKTuakwy Topwv. Eotialovtag o auth
TNV KatevBuvon, peletatal TAEoV 0 oxedlacpodg utnpeoiag Slapolpacpol Twy
PASLOTIOPWY HETAEU TWV SLAPOPETIKWY SLKTUOKWY TIApoxwv. Me TO TIPOTEL-
VO- JEVO TIPWTOKOANO SLapolpacpol PELWVETAL §pactika n emPBdpuvon tou
SIKTUOU, KABWG OAEG OL ATIALTOUMEVEG EVEPYELEG TIPAYMATOTIOLOUVTAL ATIO TO
KLVNTO. AKOUA ONUAVTIKOTEPA OpWCG, Slvetal mAcov n duvatotnta yla €yka-
Bispuon tautdypovwy TAPAAANAWY CUVEECEWV PETAEU TNG KLVNTAG OUCKEUNG
KOL TIEPLOCOTEPWY TOU €VOG OTABPWY BAoNC, agou PE TN XPron TEXVIKWY ELKOVL-
KoTtolnong To Kwnto pmopel va SnULOUPYEL ELKOVIKA OTLYULOTUTIA TOU €aUTOU
Ttou. Etol, n ouvoAwkn kivnon pilag ocuokeung umopel va SloxeteuBel kal va
egutinpetnBel amod SLaopetikoug otabuoug Baong, e§LOOPPOTILWVTAG TO SLKTUAKO
popTO.
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Abstract

We propose a new data-structure, the generalized randomized k-d forest, or
k-d GeRaF, for approximate nearest neighbor searching in high dimensions.
In particular, we introduce new randomization techniques to specify a set of
independently constructed trees where search is performed simultaneously,
hence increasing accuracy. We omit backtracking, and we optimize distance
computations, thus accelerating queries. We release public domain software
GeRaF and we compare it to existing implementations of state-of-the-art
methods including BBD-trees, Locality Sensitive Hashing, randomized k-d forests
(implemented in FLANN), and product quantization. Experimental results on image
and geometric data, mainly SIFT and GIST visual descriptors and handwritten
digits (MNIST), indicate that our method would be the method of choice in
dimensions around 1,000, and probably up to 10,000, and datasets of cardinality
up to a few hundred thousands or even one million; this range of inputs is
encountered in image matching and searching today. For instance, we handle a
real dataset of 10° GIST images represented in 960 dimensions with a query time
of less than 1 sec on average and 90% responses being true nearest neighbors.
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1. Introduction

After a couple of decades of work, Nearest Neighbor Search remains a fundamen-
tal optimization problem with both theoretical and practical open issues today,
in particular for large datasets in dimension well above 100. An exact solution
using close to linear space and sublinear query time is impossible, hence the
importance of approximate search, abbreviated NNS. We focus on the Euclidean
metric but extensions to other metrics should be possible.

Definition 1. Given a finite dataset X — RY and real e>0, x e X is an
g-approximate nearest neighbor of query ge R?, if dist(q, x) < (I + ¢)dist(q, x)
for all xe X. For ¢ = 0, this reduces to exact NNS.

Despite a number of sophisticated methods available, it is still open which is
best for various ranges of the input parameters. Here, we propose a practical
data-structure, generalizing k-d trees, which should be the method of choice in
dimension roughly in the range of 1,000 to 10,000 and inputs of a few hundred
thousand points, and up to a million. By taking advantage of randomization and
new algorithmic ideas, we offer a very competitive open software for (approximate)
NNS in this range of inputs, which provides a good trade-off between accuracy
and speed. Our work also sheds light into the efficiency of k-d trees, which is
one of the most common data structures but whose complexity analysis is far
from tight.

High-dimensional NNS arises naturally when complex objects are represented
by vectors of d scalar features. NNS tends to be one of the most computationally
expensive parts of many algorithms in a variety of applications, including com-
puter vision, pattern recognition and classification, multimedia databases, data
compression, knowledge discovery and data mining, machine learning,
document retrieval and statistics [4, 8, 9, 12, 13, 16, 18, 20, 22, 23]. Large scale
problems are quite common in such areas, for instance more than 10’ points
and more than 10° dimensions [17].

Previous work. There are many efficient approaches to NNS. We focus on the
most competitive ones, with emphasis on practical performance, in particular for
applications in image similarity search.
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An important class of methods consists in data-dependent methods, where
the decisions taken for space partitioning are based on the given data points.
The Balanced Box Decomposition (BBD) tree [5] is a variant of the quadtree,
most closely related to the fair-split tree and the k-d tree. It has O(log n) height,
and subdivides space into axis-aligned hyper-rectangles, containing one or
more points with bounded aspect ratio. It achieves query time O(d d”log n/sd),
using space in O(dn), and preprocessing time in O(dn logn). The implemen-
tation in library ANN' seems to be the most competitive method for the NNS
problem, for roughly d<I00. Recently, a novel dimensionality reduction
method has been combined with BBD-trees to yield NNS with optimal space re-
quirements and sublinear query time [1].

The performance of BBD-trees in practice is comparable to that of &-d trees.
The latter lack a tight analysis but it is known that search becomes almost linear
in n for large d because of backtracking. Randomization is a powerful idea:
in [19], a random isometry is used with k-d trees; in [21], tree height is
analyzed under random rotations; Random Projection trees [10] take another
track. R-trees and their variants are most frequent in database applications:
they are comparable in performance to k-d trees, but lack complexity and error
bounds.

k-d trees are probably the most common data-structure for NNS, having imple-
mentations in libraries ANN, with performance comparable to BBD-trees, and
CGAL, which is competitive only for small inputs. A successful contribution has
been library FLANN [15,16], considered state-of-the-art for d about 100;
the method has been most successful on SIFT image descriptors with d =128.
FLANN? constructs a forest of up to 6 randomized k-d trees and performs
simultaneous search in all trees. It chooses the split coordinates adaptively but
all leaves contain a single point. The implementation adopts some optimization
techniques, such as unrolling the loop of distance computation, but our software
goes significantly further in this direction.

In high dimensional space, tree-based data structures are affected by the curse
of dimensionality, i.e., either the running time or the space requirement grows
exponentially in d. An important method conceived for high dimensional data

1 http://cs.umd.edu/~mount/ANN
2 http://cs.ubc.ca/research/flann
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is Locality Sensitive Hashing (LSH). LSH induces a data independent space
partition and is dynamic, since it supports insertions and deletions. The basic
idea of LSH is to hash the points of the data set so as to ensure that the probability
of collision is much higher for objects that are close to each other than for those
that are far apart. The existence of such hash functions depends on the metric
space. In general, LSH requires roughly O(dn'*") space and O(dn’) query time
for some pe (0, I). It is known [3] that in the Euclidean case, it is possible to
bound p by p < 1/(I +¢)’. One implementation that we use for comparisons
is in library E2LSH? [2].

A different hashing approach is to represent points by short binary codes to
approximate and accelerate distance computations. Recent research on learning
such codes from data distributions is very active [22]. A more general approach
is to use any discrete representation of points, again learned from data points.
A popular approach is product quantization (PQ) [12], which both compresses
data points and provides for fast asymmetric distance computations, where
points remain compressed but queries are not. A powerful non-exhaustive search
method inspired by PQ is the inverted multi-index [7]. A combination of such
ideas recently led to a very efficient method for clustering large image sets [6].
There are several recent extensions, and the current state of the art in up to
10° points in 128 dimensions is locally optimized product quantization (LOPQ) [13].

Contribution. Our main contribution is to propose a new, randomized data-
structure for NNS, namely the k-d Generalized Randomized Forest (k-d GeRaF),
which generalizes the k-d tree in order to perform fast and accurate NNS in high
dimensions (e.g. 1000) and dataset cardinality in thousands or millions. Our main
motivation is image datasets, in particular GIST images, as well as image patches
of handwritten digits (MNIST dataset). We employ adaptive and randomized
algorithms for choosing the split coordinate, and further randomization tech-
niques to build a number of independent k-d trees. We also provide automatic
configuration of the parameters governing tree construction and search. All trees
are searched simultaneously, with no need for backtracking. The number of
trees depends on the input and may go up to the tens or hundreds. We exam-
ine alternative ideas, such as random shuffling of the points, random isometries,

3 http://www.mit.edu/~andoni/LSH
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leaves with several points, and methods for accelerating distance computation.
By keeping track of encountered points, we avoid repeated computations [16].
We analyze the theoretical and practical aspects of our approach with emphasis on
the experimental analysis for image data.

We have implemented all of the above techniques within a public domain C++
software, GeRaF. This has also allowed us to experiment with different alterna-
tives and provide a simple yet effective automatic parameter configuration. We
compare to the main existing alternative libraries on a number of synthetic and
real datasets of varying dimensionality and cardinality, including SIFT and GIST
images. We have experimented with parameters of all methods and observed the
difficulty, in general, to optimize them. Automatic configuration, at least on im-
age data illustrated in this paper, works very satisfactorily for GeRaF, which is the
fastest method in building the required space partitions. GeRaF also scales very
well, even for d = 10* or n = 10°% and, at the same accuracy, it is faster than
competition for d roughly in the range (103 10%, and n in the hundreds of
thousands or millions, as is the case of modern high-scale image processing and
computer vision applications.

Contents. The paper is structured as follows. Section 2 discusses the data struc-
ture and method, including randomization factors, building the forest, searching,
and improvements that we introduce. Section 3 focuses on more technical imple-
mentation issues. Section 4 presents experimental evaluation and comparisons,
while conclusions are drawn in Section 5.

2. The k-d GeRaF

The limitations of a single k-d tree for high d are overcome by searching multi-
ple, randomized trees, simultaneously. This section discusses randomization,
and algorithms for parameter configuration, building, and searching. Overall,
m different randomized &-d trees are built, each with a different structure such
that search in the different trees is independent; i.e., neighboring points that
are split by a hyperplane in one, are not split in another. Search is simultaneous
in the m trees, i.e., nodes from all trees are visited in an order determined by a
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shared priority queue. There is no backtracking, and search terminates when ¢
leaves are visited.

2.1. Randomization

The key insight is to construct substantially different trees, by randomization.
Multiple independent searches are subse-quently performed, increasing the
probability of finding approximate nearest neighbors. Randomization amounts
to either generating a different randomly transformed pointset per tree (e.g.,
rotation or shuffling), or choosing splits at random at each node (e.g., split
dimension or value). As discussed below, we investigate four randomization
factors, which we use either independently or in combination:

1. Randomly rotate the pointset, before the building process.
2. Randomly choose a cutting dimension.
3. Add a random factor to the cutting value.

4. Random shuffling of point indices.

Rotation. For each k-d tree, we randomly rotate the input pointset or, more
generally, apply a different isometry [19]. Each resulting tree is thus based on a
different set of dimensions. Only the transformation matrix R is stored for each
tree, and not the rotated set. In fact, not even the entire matrix needs to be
stored, as discussed in section 2.2. During search, the query is rotated using R
before descending each tree. However, distances are computed between the
original stored points and the original query.

Split dimension. In a conventional £-d tree, the pointset is halved at each node
along one dimension; dimensions are examined in order even for high d. Here,
we find the ¢ dimensions of highest variance for the input set and then choose
uniformly at random one of these t dimensions at each node. Thus, different trees
are built from the given pointset.
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Split value. The default split value in a conventional k-d tree is the median of
the coordinates in the selected split dimension. FLANN uses the mean for
reasons of speed. Here, we compute the median, which would yield a perfect
tree, and then randomly perturb it [18]. In particular, the split value ¢ equals
the median plus a quantity uniformly distributed in /3A / vd, pA/ \/d], where A
is the diameter of the current pointset; 0 is computed at every node during
building [21].

Shuffling. When computing the split value at each node in a conventional k-d tree,
the current pointset at the node is used, which is a subset of the original point-
set. Even if the split value is randomized, it is still possible that the same point is
chosen if the same coordinate value occurs more than once in the selected
dimension. This is particularly common when points are quantized; for instance,
SIFT vectors are typically represented by one byte per element. We thus randomly
shuffle points at each tree. Hence, different splits occur despite ties.

2.2. Building

The overall building algorithm for k-d GeRaF, consisting of m trees, is outlined in
Algorithm 1. For simplicity, only the random split dimensions are included, while
the split value is the standard median. There is a random data transformation f
per tree, which may include either an isometry, shuffling, or both; in case of an
isometry, it is stored for use during search.

Given a dataset X, the ¢ dimensions of maximum variance, say D, are computed.
For each tree, X is transformed according to a different function f and then
the tree is built recursively. At each node, one dimension (coordinate), say s, is
chosen uniformly at random from D and X is split at the median in s. The two
subsets of X, say L, R, are then recursively given as input datasets to the two
children of the node. The split node so constructed contains the split dimension
s and the split value v. Splitting terminates when fewer than p points are found
in the dataset, in which case the point indices are just stored in a leaf node. When
n is much higher than d, the bottleneck of the algorithm is finding the median,
which is O(n) on average. Otherwise, the bottleneck is computing the variance
per dimension, which is O(d). The space requirement for the entire data structure
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is O(nd) for the data points and O(nm) for the trees, including both nodes
and indices to points, for a total of O(n(d + m)).

Algorithm 1: k-d GeRaF: building

input: pointset X, #trees m, #split-dimensions t, max #points per

leaf p

output: randomized k -d forest F

1 begin

2 V « <VARIANCE of X in every dimension>

3 D « <t dimensions of maximum variance V>

4 F 0 > forest
5 for i « 1 tom do

6 f « <random transformation> > isometry, shuffling
7 F—FU [ (£, BUILD(f£(X))) > build on transformed X, store f
8 return F

9 function BUILD (X) > recursively build tree (node/leaf)
10 if |X| £ p then > termination reached
11 return leaf (X)

12 else > split points and recurse
13 S « <one of dimensions D at random>

14 v « <MEDIAN of X in dimension s>

15 (L, R) « <SPLIT of X in dimension s at wvalue v>

16 return node(c, v, BUILD(L), BUILD(R)) > build childrenon L, R

Algorithm 2: k-d GeRaF: searching

input: query point g, forest F , #neighbors k, max #leaf-checks c
output: k nearest points
begin
Q.INIT () > min-priority queue, initially empty

DESCEND (g, F[i], FALSE) > descend i-th tree, store path in Q, no checks

1

2

3 for i -« 1 to m do
4

5 £ 0 > # of leaves checked
6

H:INIT (k) > min-heap of size k
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7 while - Q.EMPTY()A ¢ <c/ (1 + €) do

8 (N, d) <« Q.EXTRACT-MIN () > (node, distance)
9 DESCEND (g, N, true) > descend again, but check leaves now
10 0~ ¢+ 1 > increase leaves checked

11 return H

12 function DESCEND (g, node N, check) > descend node N for query q
13 d « N.DIST(q) > signed distance to boundary
14 if d < 0 then > g is in negative half-space
15 Q.INSERT (N.right, |dJ) > remember right child
16 DESCEND (g, N.left, check) > descend left child
17 else

18 Q.INSERT (N.left, |dl) > and vice versa
19 DESCEND (g, N.right, check)

20 function DESCEND (g, leaf N, check) > test query q on leaf N

21 if - check then return;
22 for 1 € N.POINTS do
23 H.INSERT (1, Hq - Xi”2) > distances to points X; in leaf N

Each random isometry can be a rotation [21] or reflection, and in general
requires the generation of a random orthogonal matrix R. We rather use an el-
ementary Householder reflector P for efficiency [19]. In particular, given unit
vector u € R? normal to hyperplane H, the orthogonal projection of a point x
onto H is x - (uTx)u. Its reflection across H is twice as far from x in the same
direction, thatis, y = x - 2(uTx)u = Px, where P =] — 2uu'. Although P is or-
thogonal, the computation of reflection Px is O(n), involving a dot product
and an element-wise multiplication and addition. This is because uu' is of
rank one. We only need to store vector u for each tree.

2.3. Searching

Searching takes place in parallel in all trees; this does not refer to independent
search per tree, but rather that nodes from all trees are visited in a particular
order using a shared min-priority queue Q. The idea is that given a bound ¢ on
the total leaves to be checked, the query iteratively descends the most promising
nodes from all trees, and the criterion is the distance of the query to the hyper-
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plane specified by each node.

A shown in Algorithm 2, the query initially descends all trees of forest F' while
all visited nodes are stored in Q, without checking any leaves. Then, for each
node extracted from Q, the query descends again, this time computing distanc-
es to all points in the leaf. For each decision made at a node while descending,
the other one is stored in Q. In particular, the signed distance d = N.DIST(q)
of query g to the hyperplane specified by node N is:

N.DIST(q) = N.tree.f(q)y .— N.v (1)

where N.tree.f is the isometry of the tree where N belongs, and N.c, N.v are
the split dimension (coordinate) and value of N, respectively. One child of N
is chosen to descend according to the sign of d, and the other is stored in O
with the absolute distance |d| as key. This key is used for priority in Q.

Results are stored in a min-heap H that holds up to k£ points, where k is the
number of neighbors to be returned. For each leaf visited, the distance between
q and all points stored in the leaf is computed. For each point X; of the dataset
X, H is updated dynamically such that it always contains the k nearest neigh-
bors to g. The key used for H is the computed (squared) distance ||g — X;||°.
A separate array keeps track of points encountered so far, such that no distance
is computed twice; this detail is not shown in Alg. 2.

For each tree built under isometry f, the transformed query f(g) is used in all
tests at internal nodes, but the initial query ¢ is rather used in all distance
computations with points stored at leaves. Similarly, the transformed dataset
is used only for building the tree but is not stored. This is possible since the
isometry leaves distances unaffected. In practice, unlike (1), the query is trans-
formed according to isometries of all trees prior to descending.

Although no backtracking occurs, visiting new nodes is an implicit form of back-
tracking. However, given the bound on the number of leaves to be visited, search
is approximate. In particular, apart from the case when Q is empty, search termi-
nates when c/ (1 + ¢) leaves have been checked. That is, up to c leaves are checked
for ¢ = (), while this bound decreases for ¢ > (), making search faster and less ac-
curate.
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Implementation

This section discusses our C++ implementation of k-d GeRaF*, which is available

online. The project is open source, under the BSD 2-clause license. The code has

been compiled with g++ 4.8 compiler, with several flags enabled, e.g., optimiza-
tion flags, related to vectorization and loop unrolling. Our code is designed so
as to allow the compiler to optimize it. It uses advanced features of C++11, such
as std::ithread. It contains about 4,000 lines of code. Important implementation
issues are discussed here, focusing on efficiency.

Parameters. Our implementation provides several parameters to allow the user to
fully customize the data structure and search algorithm:

A

Number of points used for computing variance: using a subset of the points
accelerates building. Our experiments show this does not a ect accuracy.

Number of trees in forest. A small number yields fast building and search,
but may reduce accuracy; a large m covers space better and enhances
accuracy, but slows down building and search.

Number of dimensions used for splits. As d increases, a larger t is better,
until accuracy begins to drop. The optimum ¢ depends on the input.

Maximum number of points per leaf. A large p means short trees, and
saves space; a small p accelerates search, but may reduce accuracy.

Maximum number of leaves to be checked during search. The higher this
number, the higher the accuracy and search time.

Determines search accuracy (Definition 1); more accurate search comes at
the expense of slower query.

Number of neighbors to be returned for a query; specified during search.

Random value added to median to define split value. This factor does not
help much, thus disabled by default, since it is computationally costly (as
shown in table 4).

4 submitted as supplementary material
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shu Defines whether to perform random shuffling or not.

rot Defines whether to apply a random isometry or not. Isometry is not
particularly helpful, thus disabled by default, since it is computationally
costly (as shown in table 3).

We provide the same number of parameters in automatic configuration as
FLANN, namely & and k. In the case of manual setting, we provide more, thus
offering the possibility of full customization to the user. Moreover, the effective
range of parameters often differ with FLANN, since our construction is different.

Configuration. We provide a simple and fast automatic configuration method
for parameter tuning. Given a dataset and ¢ we automatically configure all
parameters above, except k. In particular, taking into account n, d and the five
coordinates of greatest variance, we configure parameters p, ¢, ¢, m, limiting
their values to powers of two. The particular values chosen are piecewise con-
stant functions of ¢, n, d, where constants have been obtained by experience,
i.e. by manually setting parameters on a number of datasets. This kind of tuning
is largely subjective. The runtime is negligible, since the variances are computed
by the algorithm anyway. However, the resulting parameter set is not optimal,
e.g. in terms of accuracy or speed.

Tree structure. Every tree consists of split nodes and leaves. A split node
contains the split dimension and value, while a leaf contains a number of point
indices. Points are stored only once, regardless of forest size. We store trees in
arrays to benefit from contiguous storage. As discussed in section 4, split value
randomization is not beneficial so we disable it. In this case, we split at medial
and trees are perfect, thus space is optimized. No re-allocation is needed because
we know the size of the tree in advance.

Algorithm 3: Modified Knuth's online variance algorithm

input: sequence x of real vectors in]Rd

output: variance on each dimension of the wvectors in x

1 begin
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2 if x.SIZE() < 2 then return return 0; > zero vector in RY
3 e 0; v «0 > zero vector in R
4 for n « 1 to x:SIZE() do

5 o « 1/n > a: scalar
6 5 « x[1] - n > &: vector in RY
7 e pu + ad > u: vector in R
8 V o« v + d0(x[1i] - n) > 0: Hadamard product;v:vectorinRd
9 return v/(n - 1)

Median, variances. The median is found efficiently by the quickselect
algorithm, with average complexity O(n). Variance is computed by an extension
of Knuth's online algorithm [14, p.232], as shown in Algorithm 3. In particular,
we extend the algorithm to operate in parallel on a sequence of vectors rather
than scalars. In doing so, we replace vector division with scalar n by multiplication
with o = I/n. This choice provides significant speed-up.

Distance computation. This is the most expensive task during search in high
dimensions. To speed it up, we note that squared Euclidean distance between
point x and query g is ||g - x||* = ||¢|I> + ||x||* = 2¢"x, where ||¢|| is constant,
while ||x|| can be stored for all points. Thus distance computation reduces to
dot product, providing a speed-up of > 10% in certain cases, as shown in table 1.
The space overhead is one scalar per point, which is negligible in high dimensions
since all points are stored in memory.

Parallelization. The building process is trivially parallelizable: we just assign
building of individual trees to different threads, making sure that the work is
balanced among threads. In table 2 we present how much faster the building
process gets with parallelization enabled for a small sized forest. Searching is
not performed in parallel: due to use of a single priority queue for all trees, more
work would be required for communication between different threads. It would
be interesting to investigate this extension in future work.
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4. Experiments

This section presents our experimental results and comparisons on a number
of synthetic and real datasets. All experiments are conducted on a processor at
2.40 GHz x 4 with 3.8 GB memory, except for GIST dataset with n = 106, for
which we use a processor at 3 GHz 4 with 8 GB. We compare to BBD-trees as
implemented in ANN, LSH as implemented in E2LSH, FLANN, and our implementa-
tion of PQ.

Table 1: Time spent for computing ||point - query||?, for d = 128.

Approach time ( sec)
online computation 3.06
stored sums 2.67

Table 2: Build with and without parallelization on SIFT data.

n d parallel sec
10.000 128 no 0.015
10.000 128 yes 0.009

1.000.000 128 no 3.32
1.000.000 128 yes 1.4

Table 3 : Build times for n = 10%,d = 10*.

Rotation build (sec)
yes 1.35
no 0.26

Table 4 : Build times for n = 103 d = 10*. Approach “no diam’ means
that no & factor was used..

Approach build (sec)
no diam 0.06

appr diam 1.92

exact diam 89.8
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Table 5: Build time (s) for three representative datasets. FLANN does

not finish after 4 hr, which is indicated by "-" on Klein bottle or

build times in gray on SIFT, where we have skipped configuration and
used default values. BBD runs out of memory on SIFT, as well as LSH

fore=0,0.1.
Sphere n=10% d=10%| Kleinn=10%d=10?> |MNISTn=60k;d=784|SIFTn=10°%d=128
e [0 01 05 09/0 01 05 09/0 01 05 09|00 01 05 09
BBD [1.25 1.26 130 1.2510.13 0.14 0.17 0.14]187.5 184.3 185.1 185.6 |- -
LSH [0.21 0.6 0.18 0.31|0.11 0.07 0.03 0.05|1.47 69.76 48.47 1435(- - 1701 1455
FLANN [ 25.0 25.4 255 256/|- -|244. 217.2 157.3 1420120 19.2 19.8 19.7
GeRaF |0.06 0.06 0.06 0.06|0.06 0.06 0.06 0.088.167 8.567 8.579 8.565[62.6 93.6 90.5 96.0

Datasets. We use five datasets of varying dimensionality and cardinality. To test
special topologies, the first two, Klein bottle and Sphere are synthetic. We generate
points on a Klein bottle and a sphere embedded in R? then add to each coordi-
nate zero-mean Gaussian noise of standard deviation 0.05 and 0.1 respectively.
In both cases, queries are nearly equidistant to all points, which implies high miss
rates.

The other three datasets, MNIST?, SIFT and GIST® [12], are common in computer
vision, image processing, and machine learning. MNIST contains vectors of 784
dimensions, that are 28x28 image patches of handwritten digits. There is a set
of 60k vectors, plus an additional set of 10k vectors that we use as queries. SIFT
is a 128-dimensional vector that describes a local image patch by histograms
of local gradient orientations. GIST is a 960-dimensional vector that describes
globally an entire image. SIFT and GIST datasets each contain one million vectors
and an additional set for queries, that are 10*for SIFT and 1000 for GIST. For GIST,
we also use the first 10° vectors as a separate smaller dataset.

Parameters. Most experiments use the default parameters provided by exist-

5 http://yann.lecun.com/exdb/mnist/

6 http://corpus-texmex.irisa.fr/
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ing implementations but, on specific inputs, we have optimized the parameters
manually. This improves performance, but is quite impractical in general. FLANN
and GeRaF determine automatically the parameters given the dataset and ¢,
while ANN uses default parameters regardless of . E’LSH provides automatic
parameter configuration, but not for the most important one, R, used in solving
a randomized version of R-near neighbor. This is a major drawback, since the
user has to manually identify R at every input. As discussed below, accuracy
measurements only refer to the first nearest neighbor, so we always set k=1 in
Alg. 2. The same holds for BBD and FLANN, but not for LSH where the number of
neighbors is only controlled by R.

In k-d GeRaF, we have observed that rotation does not seem to affect search
performance, despite the time penalty, i.e. build time increases from 0.26 to
1.35 sec on Klein bottle with n = 10% d = 10% Similarly, split value randomization
brings no benefit, despite its cost: build time increases from 0.06 to 1.92 (89.8)
sec for approximate (exact) diameter computation, while search accuracy
decreases for approximate computation. We have therefore disabled these two
randomization factors.

Implementation. Before presenting experimental comparisons to other methods,
we measure the effect of two implemen-tation issues discussed in section 3, in
particular parallelization and distance computation. Both are measured on SIFT
dataset with d = 128. On four cores, parallelization reduces build time from 15
to 9msec for n = 10%, and from 3.32 to 1.48 sec for n = 10° the speedup is higher
for larger forests. On the other hand, reduction of distance computation to
dot product reduces build time from 3.06 to 2.67 psec per point. However, this
approach appears to be effective only when d > 100 in practice.

Preprocessing. For all methods this includes building, but for FLANN and GeRaF
it also includes automatic parameter configuration. Build time is related to the
required precision as expressed by ¢. For LSH, ¢ is failure probability and its
build time is the most sensitive to €. Despite requesting the user to manually
determine parameter R, LSH performs an automatic parameter configuration as
well, which is included in the building process.
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Table 5 shows representative experiments. FLANN has difficulties with automatic
configuration, which does not terminate after 4 hr on Klein bottle and is quite
slow in general. LSH is unexpectedly fast on MNIST for ¢ = 0, which may be due
to the parameters chosen by auto-tuning. GeRaF works well with automatic
configuration, and is typically one order of magnitude faster than other methods.
Its preprocessing time may increase with ¢ since this requires fewer points per
leaf, hence more subdivisions.

We additionally carry out an experiment with product quantization (in particu-
lar, IVFADC) [12] on SIFT, implemented on Matlab with Yael’ library. Its off -line
processing includes codebook learning, which takes 440 sec for 50 k-means
iterations and encoding/indexing, which takes 45 sec. The latter time is competi-
tive if codebooks are existing from a similar dataset, but the total time given a
new unknown dataset is quite higher than GeRaF and LSH; and even higher than
FLANN with default values.

Table 6: Search accuracy and times for synthetic datasets. Search
times in gray represent failure cases where miss rate is 100%. Queries
are nearly equidistant to points, which explains high miss rates,
especially for BBD and FLANN; "-’ indicates preprocessing does not
finish after 4 hr

Spheren=10%d=10* Klein n=10% d =10 MNIST n = 60k; d = 784
e |0 0.1 0.5 0910 0.1 0.5 0.9(0 0.1 0.5 0.9
miss %
BBD |0 100 100 1000 59 59 5911 100 100 100
LSH |45 45 45 4511 1 20 63(2 2 2 2
FLANN [0 0 0 0]- - - -]100 100 100 100
GeRaF | O 24 24 1002 3 3 5(2 26 40 81

search (ms)

BBD |9.100 0.210 0.220 0.200|0.470 0.043 0.046 0.052(12 0.024 0.028 0.026
LSH |17.000 16.000 18.000 17.0002.700 2.400 1.900 0.850 (28.000 24.000 22.000 22.000
FLANN (0.310 0.280 0.350 0.320]- - - 0.021 0.021 0.020 0.021
GeRaF | 0.400 0.200 0.150 0.10010.100 0.083 0.083 0.070(3.900 2.900 1.500 1.300

7 https://gforge.inria.fr/projects/yael
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Table 7: Klein bottle search for € = 0.1, for varying n or d, where the
other parameter is fixed. Search times in gray represent failure cases
where miss rate is 100%. Queries are nearly equidistant from the
points, which explains high miss rates. "-' indicates preprocessing does
not finish after 2 hr.

n d miss % search (ms)
BB LSH FLANN GeRaF | BB LSH FLANN GeRaF
100 100 0 16 0fn1 212 12 199
o 1000 100 50 100 50(5 1850 34 14
5000 100 0 100 039 8675 149 122
10000 100 37 100 2276 17000 289 520
1000 100 50 100 50(5 1850 34 14
10000 10° 100 0 100 0(5 1780 - 390
100000 100 8 100 0276 - - 10900

Search. We report query times and miss rates for four representative values
of &. The miss rate is the percentage of queries where the reported neighbor
is not the exact one. In case of ties, any point at the same distance as the
nearest neighbor is accepted as correct. Table 6 shows results for all methods on
three representative synthetic datasets. BBD and FLANN have problems with
high miss rate or having failed in automatic preprocessing. LSH is at least one
order of magnitude slower than GeRaF. In most cases GeRaF is faster (especially
for large d = 10%), with competitive miss rate, except for FLANN on Sphere with
d = 104 which is the best dimension for FLANN.

Figure 1 presents four representative datasets with real data, namely SIFT and
GIST images. BBD and FLANN have problems, namely they suffer from either
running out of memory or not completing automatic-parameters build. GeRaF
is typically faster than LSH by at least an order of magnitude at the same
accuracy. In all cases, FLANN preprocessing does not terminate after 4 hr so we
manually configure parameters because default ones yield even higher miss
rates. Ignoring this issue, FLANN is generally the fastest method but with low
accuracy. On GIST, with d = 960, GeRaF shows best performance. LSH has 0,5%
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better miss rate for n = 10°, but is quite slower; it also fails with 100% miss rate
for n = 10° With automatic configuration, GeRaF always yields a good trade-off
between accuracy and speed. Note that with & = 0 there may still be true neighbors
missed because of the particular approximate algorithm used.

Figure 1: Search accuracy (miss rates) and runtimes (sec) on real
datasets. Numbers over points are the values of €. In (b), LSH is out of
memory for € = {0, 0.1}. In all cases, BBD is out of memory and FLANN
does not preprocess after 4 hr for any €. Its measurements in (a), (b),

(d) refer to manually configured parameters.

We also experiment with PQ (IVFADC) in these datasets, which is known to
outperform FLANN [12] when combined with re-ranking. For instance, it takes
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7 (70) msec for a miss rate of 1% on SIFT (GIST n = 10°). However its training is
slow, as noted above.

Table 7 displays, for all methods, the miss rate and search time as a function of
n or d when the other parameter is fixed. In cases where miss rate is not 100%,
GeRaF is an order of magnitude faster. The only exception is d = 100, where the
situation is inversed with FLANN.

Table 8: GeRaF build and search measurements for Klein bottle
dataset with n = 104; d = 102 for varying points per leaf p.

P 256 128 64 32 16 4 2 1
build (s) 0.0592 0.0618 0.0674 0.0695 0.0860 0.1159 0.1543 0.1587

search (ms) |0.2324 0.1863 0.1198 0.0941 0.0712 0.0592 0.0743 0.0928

miss % 1 1 2 7 6 10 14 22

Approximate search evaluation. We also measure for GeRaF the percent-
age of queries where the reported nearest neighbor does not lie within / + ¢ of
the nearest distance. This a more natural measure than miss rate when
approximate search is requested given a specific ¢. For Klein bottle with n = 10%,
d = 102 this rate is 2% and 0%, for ¢ = 0, and ¢ € {0.1, 0.5, 0.9}, respectively.
In order for the output to always lie within 1+ ¢ of optimal, one may set ¢ = n,
thus disabling the termination condition of leaves to be checked. However, due
to the curse of dimensionality, performance nearly reduces to brute force in this
case. For GIST with n = 10°, d = 960 for instance, search takes 140ms, whereas miss
rate is 0% and 0,4% for ¢ =0 and ¢ € {0.1, 0.5, 0.9} respectively.

Points per leaf. Finally, we measure the effect of storing multiple points per
leaf on the Klein bottle dataset. The results are shown in Table 4. It is clear that
search time improves when there are less points per leaf, and this is why a single
point per leaf is a common approach. However, the build time and most impor-
tantly the miss rate also increase significantly. We therefore provide a reasonable
trade-off by automatically adjusting parameter p.
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5. Discussion

We have presented an efficient data structure for approximate nearest neighbor
search that explores different random-ization strategies, and an efficient imple-
mentation, GeRaF, that is found competitive against existing implementations
of several state-of-the-art methods. We provide a simple but effective automatic
parameter configuration that yields the fastest preprocessing, including both
configuration and building, as well as a successful trade-off between accuracy
and speed. Most competing methods have difficulties, namely they suffer
from running out of memory at large scale (e.g., BBD), slow or non-terminating
parameter configuration (e.g., FLANN), or unstable search behavior between
accurate (but slow) or fast (but inaccurate) search (e.g., LSH and FLANN). PQ
is consistently faster and more accurate at search, but is significantly slower to
build, which is impractical when the dataset is updated; PQ is also conceptu-
ally harder which im-plies a more complicated implementation. Our findings are
consistent on both synthetic and real datasets of a wide range of dimensions
and cardinalities, with emphasis on SIFT and GIST images, and image patches
representing handwritten digits (MNIST dataset).

An interesting and relevant feature is that GeRaF appears to exploit intrinsic
structure in the input, such as the structure of SIFT image datasets or the Klein
bottle. The work in [21] may pave the way for explaining this behavior.

Interesting open questions include whether and how GeRaF can be fully
dynamic, supporting insertions and deletions, as well as handling batch queries
in an optimized manner. Other future directions include performing parallel or
distributed search and more principled parameter configuration with discrete
optimization. In fact, recent experiments with parameter tuning by genetic
algorithms indicate that build time for large datasets such as SIFT can drop by
a factor of 100 without significantly affecting search time while reducing miss
rate [11].
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- MTYXIAKH EPTAZIA -

2UoTnpa Zuoctacswy yLa Eotlatopia:
H Mepinmtwon twv Eotlatopiwv
Tou Aovéivou

AwpoBea - Kwvatavtiva E. Towrtén (dor.tsimpidi@gmail.com)

MepiAnyn

Avtikelpevo tng mapouvoag epyactag elvat n édnuloupyla €vog ouotrpatog
OUOCTACEWV TO OTIolo avTAel TANpoPopla amo LOTOTOTIOUG TIOU TIEPLEXOUV a&LOAO-
YNOELG XPNOTWV yLa Ta eotiatopla tou Aovsivou. To cUoTNHPa auTo TLELKLWKEL Va
BEATLWOEL TA ATIOTEAECUATA TWV CUOTACEWV TIOU epavidovtal otnv £wg Twpa
BLBALoypapia, aflomowwvtag ta TPOPIA TwV afLoAoyNTWVY yld va armodwoel
Bdpn otig afloAoynoelg toug, avdloya pe tnv aflormiotia toug. To cuotnua
amaptidetal and SLAPOoPEC CUVLOTWOEG OL OTIOLEC TIPAYHATOTIOLOUV TIPOETIEEEP-
yaola &edopevwy amod TOUG ETIAEYPEVOUG LOTOTOTIOUG, €E0pUEN TAnpowoplag
HEow emegepyaoiag YUOLKNG YAWoodag, TOTIOBETNON ETLKETWY KAl Ttapaywyr] Twv
TEALKWV QATIOTEAECUATWY HPE XPHon ouvteAeoTwy Paputntag. H teAkn spapuoyn
elvat og B€on va mapayel CUCTACELG yLa TOUG XPNOTEG, avaloya HE TLG TIPOTLUN-
OELG TOUG,.

NEEELC KAELSLA: DNTpdpLopa Baclopevo ato Meplexouevo, EEopuEn MAnpopoplag, Yuvte-
Aeotec Baputnrag, Etiketeg, Eotiatopla tou Aovéivou.
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>UoTnua 2VOTACEWY yla Eotiatopla: H Meplmtwon twy Eotlatoplwy
Tou Aovdivou - A. K. Towutiién

1. Ewocaywyn

Ta teAeutala xpovia, o aplBpog Twv SLASIKTUOKWY £QAPHOYWY KAl KATAoTNUA-
TWV OuVEXWG augavetal, divovtag tn SuvatotnTa oToug XPNOTEG Tou AlaSlkTtuou
va mAonynBouv kat va emAégouv umnpeoieg kat mpoiovta amd pua mAnbwpa
EVOAMAKTIKWVY ETAOYWV. OL UTINPETLEG Kal Ta TtpoldvTa autd eveExETaL va elval o€
apLBuo TOAU peyaAUTEPA amd ekelva VoG TIapadoolakol Kataothpatos. Kabwg
AOLTIOV au&avovtal oL ETILAOYEG TIOU TIPOCPEPOVTAL OTOUG XPrOTEG, AUEAVETAL Kal
0 XPOVOC TIou amatteital amd autoug yla va tAonynBouv kat va emieEouv 6oa
Talpladouv OTLG TIPOTLPNOELG Kal €TILOUPLEG TOUG.

MPOKELPEVOU VA QVTLPETWTILOTEL AUTO TO TIPORANPA, oL SLAPOPOL LOTOTOTIOL EPAp-
pHooav TexVIkEG eEatopikeuong (personalization) ot omoleg Ba mpooapudloviav
OTLG QVAYKEG KAL ATIALTIOELG TOU KABE Xproth. ZNHAVTLKO HEPOG AUTWYV TWV TEXVL-
KWV amoteAecav ta Tuotiuata Zuotdoswyv (Recommendation Systems - RS) [1].
Ta CUCTNPATA CUCTACEWY €XOUV YIVEL EEALPETIKA SNUOPIAR Ta TEAeuTala xpovia
KaL XpNoLYoTIolouvTal o€ pla TTANBwpa amo £QapPoyEG.

‘Ocov agopd €pappoyEg otov KAAS0 Twv eotlatopiwy, amod to 1997 pe 1o ou-
otnua Entrée [2] €wg kat onpepa, €xouv dnuloupynbel cuotrpata cUCTACEWY
ota omola 0 xpNotng SNAWVEL TLG TIPOTLPNOELG TOU OE TOMElg OTwg elval n Tot-
OTNTA TOU PAyNTOU KAl TO CUCTNUA TIPAYHATOTIOLEL TIG avaloyeg ouotaoelg. Ou
LototoTog tripadvisor.com elval €va Lélaitepa SNPOPAEG KAl EUPEWG XPNOLHO-
TIOLOUPEVO 0UOTNHA CUCTACEWY £0TLATOPLWY, TO oTtolo BacileL TG CUCTATELG TOU
O€ TIPONYOUHEVEG AELOAOYNOELG XPNOTWV. a ToUg XPNOTEG TIoU agLoAoyouv Ta
EKAOTOTE €0TLATOPLA, SnuLoupysital TPoiA OTO OTIol0 KATaypA®OVTIAL OTATL-
OTLKA TOU XPNOoTn, OTWG elvatl o aplBuog twv a&LOAOYrCEWY TIOU EXEL TIPAYHA-
TOTIOLNOEL KAl OL (POPEG TIOU OL a§LOAOYNOELG TOU £lxav BETIKN avtamokpLlon ano
AA\OUG XPNOTEG TOU ouothpatog. Qotooo, OL UTIAPXOUCEG TIPOOEYYLOELG yLa
TNV QVATTugn TETOLWV OUCTNPATWY &gV €XOUV AELOTIOLNCEL TA TIPOWIA Twv
XPNOTWV Katd tnv a&loAdynon Twv €0TLOTOPLWY KAl KATA CUVETIELA KATd TnV
e€aywyn twv ocuctacewv. Emopevwg, n agloAdoynon evog xprotn mou Bewpeitat
aflomotog AauBavel tnv (la Baputnta pe auth evog Xpnotn Ttou orolou oL
KPLTLKEG BewpnBnkav pn a§loTLoTeG amod TOUG UTIOAOLTIOUG XPrOTEG, TO OTolo
EXEL WG ATIOTEAEOHA OL TEALKEG A§LOAOYNOELG KAl OUOTAOELG va pnv elvat mavta
a&LOTILOTEC.
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2TOX0G aUTNG NG pyactag Ntav n oxedlaon kat vAotoinon evOg CUCTHHATOG TO
oTto{0 SLEUKOAUVEL TO XPrOTn OTNV €TAOYH TOU KATAAANAOTEPOU €oTlatopiou
pe BAon TLG TIPOTLUACELG TOu. To cuotnua avamtuxbnke AapBavovtag uttoyn ta
gotatopla tou Aovdivou. O AGyog NTav OTL yl'autd UTIapXEL TIOAU TIAnpoopia
SlaBeolun oto Aladiktuo omote n emiAucn tou TPoPAruatog yl'autd elval o
evéLaEPOUOa Kal £xeL peyaAutepn agla.

¥to olotnua autd, 000V aWopd TA TEALKA CUPTEpAcpATa Tou Ttapdyovtal,
AapBavovtat uttoPy Kat Ta TPo@iA TwV XPNOoTWVY €K TWV oTtolwv TponABav ot
a&loAoynoelg. Mo CUYKEKPLUEVA, 00O TILO PEYAAn amodoxr eixav oL agloAoyn-
O€ELG TOU KABe xprotn Kal 600 TILo TIOAAEG Tav o€ aplBuod, TG00 TILo peydAn Loxu
KATEXEL N YVWHN TOU otnV TeALKN BaBuoAoyla Ttou €KACTOTE €0TLATOPLOU N TWV
XAPOKTNPLOTLKWY TOU.

To olotnua CUOTACEWV TIOU SnuLoupynBnke elval cuotnua @tpapiopatog
Baolopevo oto TEpLEXOPEVO [3]. ApXLKA, €EAyOVTAL KPLTLKEG XPNOTWV Kal TiE-
PALTEPW YVWON ATIO TECOEPLE SLAPOPETIKOUG LOTOTOTIOUG HE TIEPLEXOPEVO TOUG
gotlatopla tng TOANG tou Aovsivou. Katoruw, emAéyovtal ta Baoctkd xapa-
KTNPLOTIKA Twv eoTlatoplwv pe Bacn ta omola yivetat n opadoroinon Ing
TAnpowopilag. EvEelkTKG, n ToldTnTa TOou Payntol Kat n €EUTNPETNON TWV
TIEAQTWVY ATOTEAOUV HEPLKA aTIO AUTA TA XAPAKTNPLOTIKA. MEOw TNG ETE-
Eepyaoiag kelpevou eEAyovtal Ta TEALKA CUPTIEPACHATA yLd TA €0TLATOPLA, TA
omola kat amoBnkevovtal. TEAog, o xpnotng elval oe Bon va katabeoel TG
TIPOTLUNOELG TOU 0Tn SLEMAPH TOU CUCTHPATOG CUCTACEWY, N oTtola uttoAoyileL
TLG KATAANAOTEPEG YL AUTOV CUCTACELG KAL TOU P@aVieL Ta amoTEAEoUATa.

2. ToZUoTtnpa ZUGTAGEWV

2T OUVEXELO TIEPLYPAWETAL £Va OUCTNPA OUCTACEWV, TO «Restaurant Finders,
To omolo Slvel tn duvatdtnta oto XProtn va avakaAUPel TOo KATAAANAOTEPO
£0TLATOPLO TOU AovSivou cUHPWVA HE TLG TIPOTLUNOELG TOU.




>UoTnua 2VOTACEWY yla Eotiatopla: H Meplmtwon twy Eotlatoplwy
Tou Aovdivou - A. K. Towutiién

2.1. ApPXLTEKTOVLKI) ZUGTHHATOG

ZxAMaA 1: APXLTEKTOVLKI TOU CUCTHHATOG CUCTACEWV

3. MeBodoloyia

3.1. ZUvoAo AsdopEvwv

Ta &edopeva TOU XpPNOLUOTIOLOUVTAL TIPOEPXOVTAL Ao 4 LOTOTOTIOUG, TOUG
tripadvisor.com, yelp.com, hardens.com kat zomato.com, ToU TEpAauBAavouv
KPLTLKEG XPNOTWV KAL YEVIKEG TIANPOYOPLEG yla Ta eotiatopla tou Aovsivou.
MEOWw QUTWV TWV LOTOTOTIWY, yla KABe gotlatdplo, yivetal yvwotr) n Sleubuv-
or] Tou, oL KOUCIVEG TIOU TIPOCPEPOVTAL, TO PHECO €UPOC TWV TLHWVY, OL ETILAOYEC
TIOU TIAPEXOVTAL ATIO TO E0TLATOPLO OTIWG ETILONG KAL KPLTIKEG TWV XPNOTWVY, N NUE-
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pounvia Tou TpaypatotoBnke N KABE KPLTLKN, TA TIPOWIA TWV XPNOTWV Kal oL
Betikeg Pripol Ttou AaE N KPLTLKNA.

3.2. ZuAloyn kat NMpoemegepyacia AeSopevwv

Mpokelpevou va oUAMexBoUv ta amapaitnta &edopeva aAmMo TOUG TECOEPLG
LOTOTOTIOUG TIOU €TILAEXONKAV, €yLVE XPrion €VOC TIPOYPAUHATOG avixveuong Tou
Web (Web parser), tou Jsoup [4].

Mla v TAnpowopla mou Tapbnke amd autoUg TOUG LOTOTOTIOUG, TEBNKE O
TIEPLOPLOPOG OTL yla KABe £0TLATOPLO KABE LOTOTOTIOU, OL KPLTLKEG TIou Ba aro-
Bnkevovtav o autd dev Ba rtav aAaldtepeg tou 2014 kat ev Ba Eemepvouoav
oe aplOud g 200. Emiong, O0EC KPLTIKEG SEV NTAV YPAPMPEVEG OTNV AYYALKN
yAwooa, arnoppiwbnkav.

3.3. E&opu&n NMAnpoywopiag

210 TAalolo tng gpyaciag, okomog tng €§0puUENG TTANpoYopilag NTav N cuAAoyN
SounuevNg TIANpowoplag yla tEooepa KpLtnpla Pe Baocn ta omola Ba mpaypato-
TIoLoUVTaV Ol CUCTACELG OTO PEANOV. Ta TEGCEPA KPLTMPLA TIOU ETIAEXONKaV Tav
N TIOLOTNTA TOU payntou, N eEuTnPEETNON, N ATHOCEALPA KAl N GXECN TIOLOTNTAG-
TN Twv eotlatoplwv. H eme€epyaoia uUOLKNG yAwooag Tpaypatormolonke
HEOW Tou cuotnuartog e£6puéng mMAnpoywopiag ANNIE (a Nearly-New Information
Extraction System) Tou epmeplexetal oto Aoylopikd GATE (General Architecture
for Text Engineering) [5].

To ANNIE meplhapBavel pua mAnBwpa amod €§aptripata Tou eKTEAOUV Yypay-
HOTLKN KOl OUVTAKTLK avaAucn o€ Kelpgevo Tou &gxovtal wg €lcodo. Zta
mAalola autng tng epyaciag xpnotporowibnkav ta ANNIE English Tokenizer,
ANNIE Gazetteer, ANNIE Sentence Splitter, ANNIE POS Tagger, JAPE Transducer.
OL OUVLOTWOEG OTLG OTIOLEG TpOTIOTIOLBNKAV OL TIPOETILAEYHEVEG pUBPLOELG ATav
ot ANNIE Gazetteer kat JAPE Transducer.

ANNIE Gazetteer:

O poOAog TOU gazetteer elval n xprion ALOTWV HPE OKOTIO TNV avadlntnon
OVTOTITWV OTO KELPEVO TIoU SEXETAL oav €L0060. ta TAdAioLla autr¢ tng epyactag
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Snuloupyndnkav 32 Aloteg pe oUVOALKA 6171 AEEELG N YpacoeLg. OL AloTeg auteg
nepleAduBavav  TBaveg A€EEL TIOU  AvaWEPOVTAV OTO  TIPOCWTILKO  TOU
gotlatopiou, o€ SLAYOPOUC TUTIOUC PaynTol, O AEEELG QVAPOPLKA HE TN OXEoN
TIOLOTNTAG-TLUAG KAl O A€EELG TIOU aAvaEpovIav OTNV  Athoogalpa.
AnuloupynBnkav Aloteg pe AEEELC TIOU TIEPLYPA@OUV BETIKA, apvNTIKA Kal
oubetepa ouvalobruata, OMWC €miong Kat A€EELG TILO EEELSLKEUPEVEG TIOU
TIEPLYPAPOUV KATIOLO CUYKEKPLUEVO KPLTAPLO.

JAPE Transducer:

H ypappatikry JAPE &lvel tn 6Suvatdtnta va avayvwploToUV KAVOVLKEG
EKPPACELC (regular expressions) o€ Kelpeva PE avayvVwpPLOPEVEG OVTOTNTEG. Ma
TN ypaupatikn JAPE dnuloupynBnkav 218 kavoveg, pe tn Ponbela twy omolwv
kaBopidovtal kal ToTtoBeToUvVTal OL €TIKETEG. KATIOLOL aTtd aUTOUG TOUG KAVOVEG
apopolV ToUG TITAOUG TNG KPLTLKNAG KAl KATIOLOL AAAOL TO KUPLWG KelpEVO TG
KPLTIKNG. H Baotkr) 6ea NTtav o €VTOTILOPOG TOU TPOTIOU oUVEECNG PETAEL TwV
AEEEWV TIOU UTTOSNAWVOULV TNV £VvoLa TWV XAPAKTNPLOTIKWY KAl TWV AEEEWV TTOU
(PAVEPWVOULV BETLKO, HETPLO N apVvNTIKO cuvaiocbnua wg pog auto.

EvEeLKTIKA, pla eTikeTa elvat n €€ng: «FOOD_GOOD_ver»

OL etkeEteg pe kataAnén «ver» (verified-emBefalwpeveg) avagepovtal o€
ETIKETEG YLA TLG OTIOLEG UTTAPXEL PEYAAN TILBavoTnTa va £xouv TomtobetnBel cwota
KAL KATA OCUVETIELA TIEPLYPAWOUV PE akpiBela to ocuvaiocbnua 1ou TepLlypA@eL
0 XPNOTNG. Ma TLG ETIKETEG TIOU €xOUV KataAn&én «un» (unverified-pyn emPBe-
BALWMEVEG), UTIAPXEL EVA HPLKPO evEEXOUEVO va PNV €xouv tomobetnbel cwotd
KAl €TTOPEVWG va Teplypdpouv AavBacpeva to cuvalobnua Tou TEPLYPAYEL O

Xpnotne.

3.4. YTOAOYLOMOG TLHNG XAPAKTNPLOTLKWY

MeTA TNV TOTIOBETNON TWV ETIKETWY, Tipaypatomoleital emegepyacia oto Kelpevo
TIPOKELPEVOU Va TIapaxBoUV Ta TEALKA CUPTIEPACHATA YLA TO KABE e0TLATOPLO.

OewpoUpE «T» TNV TN oTo dldotnua [1-5] yla €va CUYKEKPLUEVO XAPAKTNPLOTL-
KO OE HLA OUYKEKPLUEVN KPLTLKA. Ma tov uttoAoylopd tng tung T AapBavovtal
uTIOPN CLUVTEAEOTEC Baputntag. AcSOPEVOU OTL UTIAPXOUV ETIKETEC ETLBERALWE-
VEG KAl ETLKETEG PN emBeBalwpeveg, TiBetal otnv KABe Tepimtwon SLaPoPETIKOG
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OULVTEAEOTNG Baputntac.

K&Be meplmtwon 1 umomepimtwon yLla €va OUYKEKPLUEVO XAPOKTNPLOTLKO EXEL
TO SLKO TOU OUVTEAEOTH) BapUTnTaAG OTOV TEALKO UTIOAOYLOHO TNG TLUNG TOU Xapa-
KTNPLOTIKOU. OewpoUpe «B» autd To ouvteeotn.

MLa KPLTLKY UTIOpEl va TIEPLEXEL XPrOLUN TIANPOYOPLA PE HOPPI) KELUEVOU OTLG
KPLTLKEG, OTOUG TITAOUG TWV KPLTIKWY, OTn OUVOALKN BaBuoloyia tou eotiato-
plou Kal otig Babuoloyleg TWV XaPAKTNPLOTIKWY TIou €xel Beoel kdBe xpriotnc.
AvaAoya pE TNV ToooTNTA TNG XPNOLUNG TTANPOWOPLAG TIOU PTTOPEL VA TIEPLEXEL
pLa KpLtikn, eggavidovratl 24 TePUTTWOELG yla KaBéva amod ta Teooepa Pactkda
XOPAKTNPLOTIKA (TIOLOTNTA  AynTou, €EUTINPETNON, OXEON TOLOTNTAG-TLUNG,
atuoo@aLpa), Ta ottola £XoUV SLAPOPETIKOUG CUVTEAEOTEG «Bx» Kal «T».

EvBelktika, ylwa va oxuoel n Mepimtwon 1 mpéemel va umdpyel Slabeoiun
BabpoAoyla yla To XapaktnploTiko, TITAOG KPLTIKAG HE avagopd OTO XaPaKTn-
PLOTIKO KAl OOEC ETLKETEC UTIAPXOULV va elval emPBePalwpeves. Ztnv Ymormepi-
mtwon 1.1 emutAéov LoyUeL OTL gV UTIAPXEL ATTOKALON peyaAUtepn twv 2 (8U0)
pHovadwv Petagu kamolag eMBERBALWPEVNE ETIKETAG TOU XAPAKTNPLOTIKOU KAl TNG
BaBuoAoyilag Tou xapaKTnPELoTLKOU. Ma autr) TNV UTIOTIEPLTTTWON, LOYXUEL OTL

B=1

T =0,4*BaBpoloyla_xapaktnplotikoU + 0,3*TLUN_ETLKETWV_TITAOU + 0,3*TLur_ETIL-
BERBALWHPEVWV_ETLKETWV_KPLTLKNG

Ttnv Ymomepimtwon 1.2 umtdpxeL amokALon PeyaAUTepn twv 2 (8U0) povadwv
HETOEL Kkamolag emPBeBAlWPEVNG ETIKETAG TOU XOAPAKINPLOTIKOU KAl TNG
BaBpoAoylag ToOu XAPAKTNPLOTIKOU KaAL 1N OUYKEKPLUEVN KPLTWKA yld TO
OUYKEKPLUEVO XAPAKTNPLOTLIKO ayvoeitat Adyw avtipaong.

Ertlong, a&idel va onuewwBel 0tL avdloya pe tov aplBuo twv afloAoyrnoewv Kat
TOV aplBuo Twv ava@opwv OTa XAPOKINPLOTIKA TWV €0TLATOPLWY, OL TEALKEG
ThEG Slaywplotnkav oe emBeBalwpeveg (certain) kat pn  emBeBalwpeveg
(uncertain).
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3.5. YmoAoywopog ZuvteAeoty BaplUtntag pe Bdaon to Mpowil tou
Xpriotn

Oswpoupe «P» to ouvteAeot) Baputntag tng aflomotiag Tou Xpnotn, o
ottolo¢ TToAaTAaoLAleTal PE TO CUVTEAEOTN BaputnTag TG KPLTLKAG.

Ma TG a&loAoyrnoelg amo Tov LoTOoTomo tripadvisor.com, 000 TILO TIOAAEG
Betikeg Pripoug eixe AAPBeL 0 xPrOTNG YL TLG KPLTLKEG TOU, TOCO TILO HEYAAN
BewpnBnke n a&lomiotia tou. O cuvteAeotr¢ Baputntag Tou amodobnKe oTov
KABe xpriotn Atav o €EN¢:

P =1 + BeTikeG_PrPOoL_KPLTLKNG + CUVOALKEG_BeTIKOL_ PriPoL_KPLTIKWV/CGUVOALKOG_
apLOPOC_KPLTIKWV_XPNHotn

Ma TG a§loAOynoelg amo TOUG LOTOTOToUG Yyelp.com kat zomato.com,
TIPOKELYEVOU va  UTIOAOYLOTEL O ouvteAeotng aflomotiag Tou  XpPnotn,
HEAETABNKE N OYE€Oon TIOU €VOEXETAL VA €XEL O APLOPOC TWV KPLTLKWY TOU ME
ToV aplOpd Twv @AWV TOU OTOV LOTOTOTIO. OewpPnBONKeE OTL 00O TILO TIOAAEG
KPLTLKEG €YpaE O XPNOTNG AV AUTEG NTAV QVTLKELUEVIKEG KAL OWOTECG, TOOO
TLo peydAog Ba Empere va elval o aptBuog twv eAwv tou, Kabwg o POAOG TWV
«@AWV» OTOV LOTOTOTIO ETILTPETIEL TNV AQUECN TIPOCPAOcN OTLG KPLTLKEG AUTOU
ToU atopou. Emilong, BswpnBnke OTL evag Xprjotng PE PLKPO aplBuod amo KpLtL-
KEG KAL PLKPO aplBuo @ilwv gvdexetal va glvat kawvouplo PEAOG OTOV LOTOTOTIO.
EmMopévwg o TpooTBEpEVOg ouvteAeotng Ba Empeme va elval PKKpOg aAAG
TAUTOXPOVA TIAPOHOLOG PE TO CUVTEAEDTN) EVOG ATOMOU TIOU £lXE YpaAPeL pEyAAo
apLBPO KPLTLKWY OAAA €XEL TIOAU PLKPO aptBuo @ilwy, kabwg autd (owg utodn-
AWVEL OTL auteg dev eEeppadav TNV Kowr yvwun. Ou peyaAUTEPOL CUVTEAECTEG
S, OTIoU TO S fTav TIAPAUETPLKO, ATIOKTNONKav amo dtopd PE PEYAAo aplBuo
KPLTLKWV KAt PeyaAo aplBuod @ilwv. O cuvteleotng Baputntag mou amnododnke
OTOV KABe xpriotn Atav o €§N¢:

P =1+ BetkEC_PrQOL_KPLTIKNG + S
Ma tg afloloynoelg amod tov Lototomo hardens.com &ev  uttoAoylotnkav
OUVTEAECTEG AELOTILOTLAG TWV XPNOTWV AOYW EAAELPNG TIPOPIA TWV XPNOTWV.

Me Baon autd ta otolyela, To cuotnua ntav o€ Bon va umoAoyioel tn Baputnta
TOU TIPO@IA TOU XPNOoTn, TNV APLOUNTLKN TLPr TOU KABE XaPAKTNPLOTLKOU yLa TO
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OUYKEKPLUEVO LOTOTOTIO Kal TN BeRatdtnta autou ToU XapaktnpLloTtikoU. H TEALKN)
oTabuLopEvn TN Tou KABe YapaktnplotikoU uttoAoylotnke amd tn Baputnta
TOU TIPOPIA TOU XPAOTN, TNV TLUI TOU XAPAKTNPLOTIKOU KAl ToUg BeTIkoUg Pripoug
TNG KPLTLKNG, EQOCOV UTIpXAv.

3.6. ALemtagn ZuoTHpATog

Ta amoteAéopata autd amobnkeUTNKav Kal Eywvav SLaBEcLua oTo Xpnotn HEow
pLag SLaSLKTUAKNG epappoyng Je TitAo «Restaurant Finders. Méow tng Sltemagng,
0 xpnotng elval og BEon va KataywproeL TLg TIPOTLUNOELG TOU ETAEYOVTAG ATIO
pwa mAnBwpa emAoywv. MNa kabe medlo emAOYWY, UTTIAPXEL KAL N KEV ETILAOYI)
n omoia onuatvel OtL &ev elval amapaltnto yla To xprnotn va emAEEsL kamola
OUYKEKPLUEVN TLUN yLa auTo.

APXLKQ, TIPOCWEPETAL €vag PEYAAOG aplBuog amd emAOYEC yla To Tedlo TG
TomoBeoiag, To omolo amoteAsital amo ta 3 TPWTA YPAUHPATA TOU TaxudpouL-
KoU KWwLKa Tou eotiatopiou. Emiong, mpoopepovtal SLapopeTIKeG KOULLVEG armo
TLG OTIOleC 0 XPrOoTNG KaAsltal va emAEEEL. XTO €UPOC TWV TLHWV UTIApYouV 3
ETILAOYEG, ATIO TLG TILO OLKOVOMLKEG WG TLG ALYOTEPO OLKOVOMLKEG. ‘Ocov agpopd
N Suvatotnta mapdadoong ayntoU OTo OTiT,, T duvatotnta €otiacng o€
LBLWTLKO YWPO TOU €oTlatopiou, Tn duvatotnta emAOYNC QayntoU OfE TIAKETO
Kal Ttn Suvatotnta KPATNOEWVY, EKTOG ATIO TNV KEVH ETILAOYT), UTIAPXEL N ETILAOYN
«Yes». a ta 4 Baclka Xapaktnplotikd, SnAadn tnv moLotnta Tou payntou, tn
OXE0N TIOLOTNTAG-TLKNG, TNV €EUTINPETNON KAL TNV ATHOOEPALPQA, EKTOG ATIO TNV
KEVN TWUA UTtdpyeL n emloyn «Good». TéAog, Slvetal n emAoyr} oto xpriotn va
ETIAEEEL OUVSUAOPO aTO TECOEPLG LOTOTOTIOUG, TOUG tripadvisor.com, yelp.com,
hardens.com kalL zomato.com, amo Toug OToloug Ba TPOEPYOVTAL OL TEALKEG
ouotdoelg. Qotooo, av &ev eTAEYEL TOUAAXLOTOV €vag LOTOTOTIOG, TO oUOTNHA
ouoTAoewV AapBavel uTtOYN KAl TOUG TECOEPLG LOTOTOTIOUG.

EOTw OTL 0 XPNoTng exeL BEoel wg koullva tnv emhoyn «Chinese», €xeL Beoel
0TNV TIOLOTNTA TOU (paynToU KAl 0T OX£0N TIOLOTNTAG-TLUAG TNV €TTLAOYH «Go0od>,
EXEL ETIAEEEL WG LOTOTOTIOUG TOUG tripadvisor.com kat zomato.com kat &gV €xeL
Swoel em\oyn ota uttdAotra edla. Itnv «Ewkdva 1» eppavidovtal ol cUCTACELG
ylLa QUTEC TLG TIPOTLUNOELG.
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Ewkova 1: ATtoteAéopata TwV CUGTACEWV

ErumAéoy, yla kaBe eotiatoplo umapyxel n emAoyn «Show more», n otola
EMPaVIfEL TO €EKAOCTOTE €0TLATOPLO HE TA TIANPN OTOLXELD, XOAPAKTNPELOTIKA Kal
TIapoxEG tou. Eotw OTL 0 xprotng emeAeée to €otlatoplo «Kam Fung», otnv

«ElkOva 2» tapouctadovtal Ta otolxela Tou.

Ewkova 2: MARpNG eppavion otolxeiwv eotLatopiou
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3.7. EUpeon Zuotdocswv

‘Otav 0 xprotng SNAWOCEL TLG TIPOTLPNGCELG TOU, YLla KABE £0TLATOPLO TIOU TNPEL TLG
nipoUToBeoeLg TTou £€0€0g, uTtoAoyidovtal oL €ENG TLUEG:

field1: H Ty aut) avtumpoowteVel ToV APLBPO TWV XAPAKTNPLOTIKWY yla
TA oTtola UTTAPYXEL PN KEVH TIANPOYOPLa CUYKPLTLIKA PE ToV aplBud Twv Xapa-
KTNPLOTIKWVY yla Ta ottola evéLagepetatl o Xpnotng. Na mapadelypa, €0tw OtTL
0 XPNotTnG exeL €mAegel va Sextel TANpowopla amd TOUC LOTOTOTIOUG
tripadvisor.com kat zomato.com Kat TA XOPAKTNPLOTLKA TIOU TOV evéLaPe-
pouv glvat n ToLdTNTA TOU PaynTou Kal N oxEon ToLoTNTAG-TLUAG. O pEyLoTog
aplBpog mou pmopet va Sextel n twun «field1» lval 4, to omolo avtilpoow-
TeVEL TNV UTIAPEN PN KEVNC TLUNAG TWV XAPAKTNPLOTIKWY «@aynTo» Kal «OXEoN
TIOLOTNTAG-TLPAG» Yyla TOV LOTOTOTo tripadvisor.com kat tnv Umapgn pn Ke-
VNG TLUNG TWV XAPAKTNPLOTIKWY «@AynTO» KAl «OXEON TIOLOTNTAG-TLUNAG» yLa
TOV LOTOTOTIO Zomato.com.

field2: H Tt autn ekppdadlel tn peon PeBaldTnTa TWV XAPAKTNPLOTIKWY yLd
Ta oTtola evéLaepeTal o xprnotnge.

field3: Ekppddel Tn pEon TP TWV XAPAKTNPLOTIKWY yla Ta otola evélagepe-
TAL 0 XProTNG.

field4: H tiur autr) avtumpoowTteVel Tov apLlBUd TWV XAPAKTNPLOTIKWY yLa Ta
omola &gv £xeL SnAwoeL evdLapepov 0 Xprnotng aAAa sival Stabsoipa otoug
LOTOTOTIOUC TTOU ETTEAEEE.

field5: H T autn) ekppdadel tn peon BeBaldtnTta TWV XAPAKTNPLOTIKWY
yla ta otola Sev £6€l&e evdLawepov 0 Xprnotng aMd elvat stabéotpa otoug
LOTOTOTIOUC TTOU £TTEAEEE.

field6: Ekppdadel Tn peon TLUA TWV XAPAKTNPLOTIKWY yLa Ta ottola &ev evdLage-
PETAL O XPOTNG AAAA UTIAPYXOUV OTOUG LOTOTOTIOUG TIOU ETTEAEEE.

H p€on twn tng mowdtntag Tou payntou, n PESN TLUN TNG OXEoNG ToLOTN-

TAG-TLUNG, N MEON TLUA TNG ATUOOWALPAG KAl N MEON TN TNG €EumnpETnong
yLa TOUG LOTOTOTIOUG TIOU ETIEAEEE O XPNOTNG.

‘Otav UTIOAOYLOTOUV QUTEG OL TLPEG Yyld TO KABe e€0TLAtoplo, TA TEALKA

ATIOTEAECHATA TOU OUCTNHATOG OUOTACEWV Taglvopouvtal pe @Bivouoa oel-
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pa olppwva pe TG TIPeg Twy «field1», «field2», «field3», «fieldd», «field5» kat
«field6», 6mou to field1 €xeL tn peyaAutepn Baputnta kat to fieldé tn pikpdTePN.

Aut n peBodog TavOUNOoNG ETILTPETIEL VA EPPAVIOTOUV OTNV KOPUYN TNG
Alotag ta eotiatopla ToU TIEPLEXOUV TNV TEPLOCOTEPN eTLREBALWPEVN BETLKN
TIANPOYOPLA YLa TA XAPAKTNPLOTIKA TIOU EVELAPEPOUV TO XPrOTN, EVW TIAPAAAN-
Aa AapBavovtat uttoPLy Kal oL THEG TwV UTTOAOLTIWY XapaKTNPLOTIKWY. Me auto
TOV TPOTIO, OTNV KOPU®N TwV OUCTACEWV Tomobetolvtal ta eotTlatopla Tou
EKTOG ATIO TA ETILHEPOUC XAPAKTNPLOTLKA, (VAL TILO KAAAQ KAL OTO CUVOAO TOUG,

4. Iupmepacpata

TNV mapouoda TTUXLOKN e€pyacia uAoTolnBnke eva cUCTNUA OUCTACEWV TIOU
e€ayel MANpoYopleg Kal AELOAOYNOELG E0TLATOPLWV aTtO 4 LOTOTOTIOUG, TLG ETIEEEP-
yadetal Pe TEXVLIKEG emegepyaoiag PUOLKNG YAWoodG Kal UTIOAOYLZEL TLG TEALKEG
BaBuoAoyleg TWV XAPAKTNPLOTIKWY TWV €0Tlatopiwy, AapBavovtag utoywy kat
TA TIPOWIA TWV XPNOTWV TIOU Kateypaav Ta oXOALd OTOUG EKACTOTE LOTOTOTIOUC.

H apxwkn, pn emnegepyaopevn mAnpowopia €ENxBn amd 4 (OTOTOToUG ME
TIEPLEXOPEVO TOUG KPLTLKEG €oTLatoplwv Tou Aovslvou. ZTIC KPLTIKEG QAUTEC,
EKTOG amo Kelpevo, TepLeEXOTAV Kal aplBuntikr) agloAdynon twv Paclkotepwy
XOPAKTNPLOTIKWY Tou KABe eotiatopiou N tou eotlatopiou cav cuvolo. Eva
ONMAVTLIKO TIPOTEPNHA TOU CUCTHHATOG ElvVaL TO YEYOoVO( OTL TIPAYHATOTIOLNONKE
ene€epyacia QUOLKAG YAWOOAG OTO KelPEVO TwV aELOAOYNOEWY TIPOKELLEVOU VA
e€axBolv oupmepdopata yla ta 4 Baclkotepa XapaKTNPLOTIKA TWV 0TLatopi-
wv. Auth n enegepyacia kpiBnke amapaitntn T60O yla Ta £0TLATOPLA OTA OTtola
Sev uttpxe N emAoyn katdbsong Babuoloyiag yla ta 4 Bacikotepa xapaktnpl-
OTIKA, 00O KAl yla Ta €o0tlatopla OTou utpxe BabuoAdynon autwv Twv
XOPAKTNPLOTIKWY, KABW¢ amotelece TAnpogopila mou emiBeRalwve ta TeAKA
aroteAéopata ry eAALTr) Sedopgva.

Ma tn stadikacia tng £6puEng MAnpoyoplag amo To KEIPEVO TWV agLoAoyroewY
SnuloupynBnkav cuvoAlkd 218 AsElloylkol Kavoveg Kat Aloteg pe 6171 AEEEL
N @PACELG TIOU Toug cuvodeuav. O peEYAAOG aplBUOC KavOVWwV Kal AEEEwV
ETETPEYPE TNV TOTIOBETNON APKETA PEYAAOU APLOPOU ETLKETWY OTLG KPLTLKEG TWV
XpNotwv. Qotooo, dev ftav Suvatov va An@Bouv uttdPLy Kavoveg yla OAOUG TOUG
TPOTIOUG AEELAOYLKNG KAL COUVTAKTLKNG EKPPACNG TIOU EVSEXOPEVWG VA ETIEAEYE
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0 XPNOTNG yla va ekppactel otlg agloAoynoelg tou. Emiong, av kat ol Kavoveg
nepteAaBav potiBa omou avayvwpilovtav oL apvrioel O pLa Tpotacn, oL
ottoleg dAAalav To vONnua PLag €KPPacng, Kat o€ autr tnVv meplmtwon dev nrav
TIAvTa SUVATO VA EVIOTILOTOUV OAEG OL APVNTLKEG EKPYPATELG.

[MPOKELPUEVOU OL TEALKEC TLHEC TWV XAPAKTNPLOTIKWY va BewpnBoulv aflori-
OTEG, XPnolPoTo)Bnkav otabuLopPeVoL PJECOL OPOL yLld TOV UTIOAOYLOPO TOUG.
M0 OUYKEKPLUEVA, KATA TOV UTIOAOYLOPO TWV TLHWV TWV XAPAKTNPLOTIKWY yLa
KABe €0TLATOPLO, AvaAoya HE TO TIPOWIA TOU XPHotn TIoU Kateypaye To oXOALO
KAl TNV armodoxn Tou €AaPe TO OXOALO, UTIOAOYLOTNKE KAl SLAPYOPETIKOG CUVTE-
AeoTr¢ Baputntag yla Tov TEALKO PECO OpO TOU KABE XapaktnploTikoU. Auth
N TEXVLKI OUVERAAE OTOV UTIOAOYLOHPO TEALKWV TLHWVY XOPOKTNPELOTIKWY OTIOU N
TILO SNPOWPIANG AttoPn ETILKPATNOE KAl N Alyotepn SnUOQANG AN@Onke uttoyn
O€ PLKPOTEPO Babuo.

H Slemagn tng SLadLKTUAKNG €QapUOoYrG TIPOCWEPEL OTO XPNotn tn duvatotn-
TA EMAOYNC TIPOTLPNCEWY Ao 4 BaAcLKA XAPAKTNPLOTLKA AAAA KAl YEVIKOTEPWVY
OTOLXELWV KAl TTAPOXWV TOU €0TLATOPlOU, OTIWG €lval n TEPLOXN KAl TO €UPOG
TWV TWPWV o€ auto. Eva mpotépnua Tou cuoTNHAtog €lval OTL Ol CUOTAOCELG
meplAapBavouy eotlatopla avegaptntwg SnUOTIKOTNTAG. [0 CUYKEKPLUEVQ,
Kabw¢ o apBuog twv aflohoynoswv Sev AapBavetat umoPn OTLG TEALKEG
OUOCTAOELG, £0TLATOPLA Ta oTtola Sev £xouv PeEyAAo aplBuo afloAoynoswv aAAa
OL TLHEC TWV XAPAKTNPLOTIKWY ToUuC elval UPNAEC Kal emPBeRaALWPEVES, EXOUV
Tn Suvatotnta va Bpebolv TNV KOPUPr) TWV CUCTACEWV.
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Abstract

We study the identifiability of users across social networks, with a trainable
combination of different similarity metrics. Motivated by the need to verify
information that appears in social networks, we need to identify users across
networks. We approach this problem by a combination of similarity measures
that take into account the users' affiliation, location, professional interests and
past experience, as stated in the different networks. We experimented with a
variety of combination approaches, ranging from simple averaging to trained
hybrid models. Our experiments show that, under certain conditions, identifi-
cation is possible with sufficiently high accuracy to support the goal of verification.

Keywords: User Identification, Similarity Learning, Entity Resolution
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1. Introduction

Social network services have became part of our everyday life. It is now com-
monplace that people have accounts in multiple social networks, sharing their
thoughts, promoting their work and probably influencing a part of the population
via them. A variety of functionalities are provided by these services, such as video
and photo uploading, posting, messaging, republishing etc, differing according to
the platform and its aim.

A variety of recent studies focus on the problem of user identification across
the web. To the best of our knowledge this is the first study whose motivation is
to verify the validity and trustworthiness of information based on public profes-
sional information provided by users in social networks. To achieve this, public
information from one network can be used to validate the source of information
in another network. Therefore, there is a need for user identification across social
networks.

In this study, we try to identify users across two popular networks: LinkedIn
and Twitter. Our approach relies on novel similarity measures, that mainly
take into consideration professional information about the users. To achieve a
satisfactory combination of the proposed similarity metrics, we experiment with
various supervised classification techniques. In addition, an attempt is made to
deal with the imbalanced data problem and estimate the value of missing fields.
Experiments based on a real world scenario show the high accuracy in user
iden- tification between these networks. Thus, the main contribution of our work
is to prove that the proposed approach of combining different similarity metrics is
a viable solution to the identification of users, which in turn can be used to verify
the validity of public information in social network.

However, many efforts have examined user-account correlation across web
profiles by exploiting explicit and implicit information. For example Vosecky,
Hong, and Shen [10] combine different explicit profile fields by setting definite
comparison vectors. In addition, lofciu et al. [2] study the influence of tags in
user identification across tagging network services relying on the combination
of implicit and explicit information. Malhotra et al. [9] utilize explicit feedback,
in order to model the digital footprints of users in the Twitter and LinkedIn
social networks. Their work is the one that comes closest to our approach, but
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it also bears a number of differences from it. Due to our original motivation,
we focused on a different set of features to be extracted from the user profiles
while we handle differently the problem of imbalanced data. Namely Malhotra
et al. [9] use random sub-sampling to balance the training data, thus training
their model with the same number of match and mis-match examples. Finally,
our work addresses the issue of missing feature values, which is not dealt with
in Malhotra et al. [9]

The most recent work of Goga et al. [1] is also the one closer to our work, corre-
lates users across different and popular social networks in large scale. Their
study is based on public feature extraction and the proposed similarity metrics
deal with explicit information. Due to the large scale of data, they present a clas-
sification strategy in order to deal with availability of fields and imbalance.

2. Problem Description

In this study, we focus on individuals that are interested in promoting their
professional activities in social media. Thus we experiment on two popular social
networks that are used mainly, though not exclusively, for professional purposes:
Twitter and LinkedIn. We assume that the individuals often provide their real
name in these social networks and therefore, the problem that we need to solve
is primarily that of name disambiguation. Specifically, our approach compares
users that have similar names, based on public information provided by the users,
as returned by search engine of the respective network.

Within a social network, each user is represented by a set of attributes that
forms their user profile. We derive a subset of these attributes based on the
public accounts of users in the respective network. The LinkedIn profile of a
user includes the following attributes: screen name, summary, location,
specialization, current/past jobs with the respective affiliations, education, as
well as projects and publications. On the other hand, the Twitter profile of a user
contains: screen name, short biography, location and the user mentions, that
the user specifies in her tweets. Although the process starts with a name search,
screen name can be considered as a feature because the results of the search
engine do not always fit exactly to the query. Fig. 1 presents a simple example
of how the user’s attributes are aligned in the two networks, in order to be used
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in the similarity metrics.

Figure 1: Example profiles and the alignment of their attributes, as

used in the similarity metrics.

3. Approach

3.1. Description of Profiles

As explained in the previous section, the basic idea of our approach is to pair
accounts that result from name search and identify those that belong to the
same user. Therefore, the task that we are dealing with is translated to a classifica-
tion of account pairs into two classes: “match” and “mis-match”.




Similarity-based User Identification across Social Networks - A.Zamani

Specifically, in order to identify users we create a similarity vector for each pair
of users' profiles. The representation of our similarity vector is based on the defi-
nition proposed by [10]. Suppose that we have two user profiles from different
social networks:

u; ESNI and U ESN2 (M
The similarity vector of the two profiles is defined as:
Vu;, uy,)=<score;, score,, - -, score, > (2)

where score; corresponds to the score, returned by the kth similarity metric.
In order to facilitate the comparison, the similarity scores are normalized in the
range [0.0, 1.0].

3.2. Similarity Measures

In this subsection we describe the similarity metrics that we use, in order to con-
struct the similarity vectors for pairs of user profiles.

Name Measures. Previous work in record linkage [8] recommend Jaro-Winkler
as an appropriate similarity for short strings. Therefore, in our approach we
use the Jaro-Winkler distance in order to find the similarity between the screen
names of users -first and last name that a user provides during her registration.

Description Measures. The basic idea is inspired from the fact that users
often provide common phrases in their description in different social networks.
This measure estimates the similarity between the short biographies or sum-
maries that users provide in different social networks, in order to describe
themselves, their work and their specialization. An example is shown in Fig. 1.
In order to measure similarity according to this short description, we pre-
processed corresponding fields of the two profiles. We removed the punctua-
tion, lower-cased and tokenized the description, thereby creating two different
token lists. The similarity of the two token lists is computed as the ratio of their
common words, to the total number of all words in both description fields.
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Location Measures. Our comparison utilizes the textual representation of the
location field in a geospatial semantic way. We convert the locations provided in
the different social networks to bounding boxes, with the use of the geonames
ontology [12]. The similarity score of the two locations is defined by the following

equation:
Bbox(l,)/Bbox(L,) if Bbox(l,) < Bbox(L,))
LocSim(l,,1,) = Bbox(1,)/Bbox(l,) if Bbox(l,) = Bbox(1,) -
(1,) |
1/(1 + ”ll - lz||2 ifl, 1, eSC
0.0 otherwise

where Bbox represents the bounding box of the respective location and SC
refers to the same country. The similarity score in all situations is normalized in the
range [0.0, 1.0].

For example lets assume that we have SNigcation1 = “New York”, that appears in
one social network and SNigcationz = “Manhattan”, that appears in the other.
Since Manhattan is a borough of New York City, its bounding box will be included
into the bounding box of New York city, as shown in Fig. 2. Thus, the similarity of
the two locations is measured as the ratio between the covering area of
Manhattan's bounding and the area of New York City's bounding box. Now
suppose that we retrieve two locations that belong to the same country but
their bounding boxes are not subsumed -SNigcations = “Athens” and
SNiocationsa = “Sparta”. In this case, their similarity is computed by the Euclidean
distance of the coordinates of the centres of two bounding boxes.

Figure 2: Example with bounding boxes in location measure.
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Affiliation-Education measure. This measure attempts to match the current/
past affiliation and educational experience of the users, as stated in the social
network profiles. In order to measure the similarity score we create two token
sets, one for each corresponding network. Fig. 1 shows the profile fields that
participate in this score. In LinkedIn’s set we use the affiliation of current and
past experiences and the educational schools, while in Twitter's set we use
the userMentions (@ symbol in Twitter) that appear in the user's tweets.
While neither of the two token sets include duplicates, the token set obtained
from Twitter contains additionally the frequency of each userMention. An addi-
tional practical problem with userMentions is that they appear in an abbreviated
form. So, there is a need for a textual comparison measure that is suitable for
sub- string matching. Based on the related survey [4], the Smith-Waterman
distance measure seems adequate, because it combines edit and affine gap
distances. We measure the similarity between each pair of tokens in the two
token sets and keep only those similarity scores that exceed a predefined
threshold ¢. Then we weigh the resulting scores according to the frequency of a
userMention in Twitter profile. Therefore, the overall similarity score is calculated
as shown in the following equation:

i(scorei x freq,) Zn: freq, 4)
i=l i=1

where score; is the Smith-Waterman similarity score of a pair of tokens that is
above the threshold ¢ and freg; is the frequency of appearance of the specific
userMention in the user’s tweets. The weight indicates a significance estimate of
the corresponding userMention.

Achievements measure. It is common that users highlight their professional
achievements and their job specialization in the short biography field of their
profile. The main idea is based on the observation where the words that a user
often provides in description field in Twitter, belong to the same family with the
ones that she provides for her job, publication etc in LinkedIn. We attempt to
capture this by using SoftTFIDF metric, which takes into consideration “similar”
and not only identical tokens [4]. We compose a textual summary of the most
significant professional achievements of a user, as she provides in LinkedIn:
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we combine current and past job experiences and the corresponding affilia-
tions, professional specialization, projects and publications that she has
participated in. The similarity between this “profession summary” and the short
biography in Twitter is computed with the use of SoftTFIDF.

3.3. Classification

As mentioned above, the various similarity measures are used to built
similarity- vectors. These vectors are then classified in order to achieve the
required user identification. Below we describe the different classification
approaches that we tested.

Baseline classification results. As a baseline we calculate the average of the
scores in the similarity vectors:

AvgScore(V) = Z (score;) (5)
n

i=1

where score; corresponds to the respective score in the similarity vector. The
higher the score, the more likely it is that the corresponding profiles belong to
the same user.

Binary Classifiers. A different way to classify similarity vectors is by training
binary classifiers. For each profile set, we declare as “match” the profile that is
assigned maximum probability by the classifier, depending on the classes’
distribution of the respective binary classifier. The classifiers that we tested are:

* Decision Tree: In our study, we experiment with the C4.5 decision tree and use
pruning to avoid overfitting.

* Naive Bayes

* KNN: In our study, we set the value of k to 5. Moreover, the nearest neighbors
are determined by the Euclidean distance of the pair to the training instances.

* NBTree: This is a hybrid approach that involves Naive Bayes and Decision Trees
classifiers.
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* DTNB: This is a hybrid approach that involves Naive Bayes and Decision
Tables classifiers.

4. Experimental Results

4.1. Data Collection and Experimental Setup

The collection of the data was based on name search, as denoted in Section 2.
We started with a list of target users in mind, e.g. Katerina Zamani, where each
one had a different name. Given the name of a particular target-user, we gathered
the first 25 profile-results from each network, using the networks search engine.
Thus, we created two sets of profiles (one for each network), each set contain-
ing the results of the search for a particular name. Specifically, each data set
contains 262 profiles sets and we gathered 2766 LinkedIn profiles and 3373
Twitter profiles in total. The aim of our study was to identify within each such set
only the profile of the target-user, given the users profile in the other network,
e.g. given Zamani's profile in Twitter, we wanted to identify the profile of the
same person in LinkedIn, among the set of profiles that the search for Katerina
Zamani has returned. Each comparison produces a similarity vector, as described
in Section 3.2, which is classified as a match or not. In each set we identified one
profile as the correct match, while all others were considered mismatches. In
our experiments we use two different datasets corresponding to the direction of
the identification, i.e. starting with a profile from LinkedIn we compare it against
the profiles of the corresponding set in the Twitter dataset and vice versa.
Henceforth, we refer to the former task as Twitter identification and the latter
as LinkedIn identification.

Missing Values. It is common that users do not complete every fill in all fields
of their profile. This influences the performance of our approach because many
profile fields that we use, are not available. Table 1 presents the percentage
of missing fields for each similarity metric. The metrics with 0% of missing values
denote that the respective fields are compulsory during the user’s registration.
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Table 1: Percentage of missing values

Affiliation-
Name Description Location Achievements
SN/metric _ _ _ Education ‘
metric metric metric metric
metric
LinkedIn 0% 67% 0% 17% 8%
Twitter 0% 42% 47% 22% 42%

Imbalanced Data. The nature of the identification problem across social
networks results in considerable imbalance between the two classes (match
vs. mismatch). In our study, only 9.5% of the LinkedIn profiles and 7.8% of the
Twitter profiles comprise the minority (match) class. This imbalance can cause
problems during training for some classifiers. In order to handle this issue, we
suggest a procedure during the testing phase of classification.

4.2. Results for Separate Measures

In this section we evaluate separately each similarity measure that we used.
Taking into consideration the large amount of missing values and how this could
nfluence the accuracy of classification, we examined the following solutions:

* Set a default score: We set 0.5 as a default similarity score, when the score
cannot be calculated. It was worth recalling that all scores are normalised in
the range [0.0, 1.0].

* Set the average score: We set the missing similarity score to the average
value of the similarity scores, that can be computed from the available fields.
This average score is different for each metric and it depends on the measured
similarity scores of the respective measure.

* Set the median score: The basic idea of this approach is similar to previous
one, but instead of the average, we use the median value of the computed
similarity scores.

In particular, we compute the recall of each similarity score separately. Note
that precision is the same as recall here, since all methods are required to return
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exactly 262 matches. Specifically, we select as the most likely matching set the
one with the maximum similarity score, i.e. for each profile set we define as
“match” the pair with the maximum average score. Table 2, provide the results
for the two datasets (LinkedIn identification and Twitter identification ), and for
the different strategies to deal with missing values.

Table 2: Recall for LinkedIn and Twitter identification for different
measures and different strategies for missing values. Results are
presented as percentages to facilitate readability.

Affiliation
Iden/tion Name- Desc. Location Achiev. Baseline
Strategy Education
Type Measure | Measure Measure Measure | Classifier
Measure
Default | 68.70% | 60.31% | 67.94% | 80.15% | 83.59% | 86.26%
LinkedIn I. | Average | 68.70% | 64.12% | 69.08% | 79.77% | 87.02% | 86.64%
Median | 68.70% | 63.74% | 68.70% | 79.77% | 87.02% | 83.59%
Default | 90.84% | 80.92% | 75.57% | 75.19% | 74.81% | 74.81%
Twitter I. | Average | 90.84% | 85.50% | 82.44% | 75.19% | 79.77% | 88.55%
Median | 90.84% | 85.50% | 79.78% | 74.43% | 79.77% | 85.11%

We can notice that the score in the name metric in Twitter's identification case is
much higher, due to the different nature of network’s search engines. In addition,
the high success scores of the two last metrics in LinkedIn's identification case,
indicate the importance of the professional fields in the identification. Regarding
Table 2 we conclude that the average score approach predominates in missing
values problem, so we choose this for the rest of our experiments.

4.3. Results of the Trained Classifiers

At this subsection we refer to our classification strategy and we present the
results from the different classifiers we use. To estimate the performance of our
classifiers we utilize the k-fold cross validation technique. Due to the structure of
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our datasets, we split our sets to 7-folds in order to test the 14% of the database
each time.

Due to imbalanced data problem, we specify as “match” the pair with the
maximum probability. This probability, which is derived from the distribution of
the positive class during training, denotes the likelihood membership of the
instance in that class [11].

Table 3: LinkedIn and Twitter identification results for various

classifiers
[den/tion ) Decision Naive
Metrics KNN (k=5)| NBTree DTNB
Type Tree Bayes

Accuracy | 97.87% 98.09% 98.40% 98.68% 98.96%

Precision 89.58% 90.35% 92.66% 92.28% 94.98%

LinkedIn I.
Recall 88.96% 89.69% 91.99% 91.59% 94.27%
F-measure| 89.27% 90.02% 92.33% 91.93% 94.62%
Accuracy 97.93% 97.89% 98.57% 98.52% 98.61%
Precision 86.49% 86.10% 90.73% 91.12% 90.73%
Twitter I.

Recall 86.49% 86.10% 90.73% 91.12% 90.73%

F-measure | 86.49% 86.10% 90.73% 91.12% 90.73%

As we can notice from Table 3, our approach performs well for detecting
matches and especially with the use of NBTree and DTNB classifier. Even the low
proportion of groundtruth data, the results for precision and recall in match class
are satisfactory, so we achieve a high score in accuracy. Taking into consideration
the ROC curves in the Fig. 3, we can conclude that DTNB outperforms the other
classifiers in both cases (LinkedIn identification and Twitter identification ).
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Figure 3: ROC curves of the classifiers. The left graph represents
the LinkedIn identification task while the right graph the Twitter
identification task

5. Conclusion and Future Work

In our work, we studied user identification in two popular social networks in
order to support information verification. We used different similarity measures
for different pieces of information provided by the user, and we combined them
using supervised classification upon similarity vectors. As shown by our experi-
ments, on the specific data set, using a hybrid classifier (DTNB) we can achieve a
very high user identification performance.

A possible future extension of the presented work, would be the handling of
class imbalance with a more sophisticated approach, either by using ensemble
filtering (e.g SMOTE [6]), or by setting higher weights to the matches during
training [1]. Moreover, we could enrich location information provided by the
users with estimations of locations as mentioned by the user in tweets or job
descriptions, as [5] suggests. Finally it would be interesting to study the potential
contribution of our approach to the difficult problem of identifying fake or
compromised account in social networks [3].
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Abstract

Modelling binding sites of enzymes is a fundamental but rather demanding task,
of increased complexity since the residues forming these sites are not rigid.
Similarly, studies concerning binding of a ligand, at such a site and complex
formation, raises difficulties mainly because most of the structural determi-
nants that control binding are not known. Using a combination of sampling and
statistical analysis, we contribute towards developing much more accurate
binding affinity predictions for macro-molecular docking. To this end, we study
benchmark protein families with known 3D structure with the aim to identify
specific geometric parameters for modeling their binding cavities. We start by
studying the boundaries within which every residue in those cavities can move,
in 3D Euclidean or in conformational space. Key methods employed include struc-
tural alignment of secondary structure elements, RMSD heat-maps, sampling
(e.g. in the space of rotamers), and (generously) allowed regions as defined in the
Ramachandran plot. Our tools involve powerful methods, such as alpha-shapes,
nearest-neighbor search and clustering, adapted to the specific context. The
developed methods were tested on a subset of kinases proteins with known 3D
structure, which offer a number of target sites for one or several ligands. Sets
of rotamers were produced by sampling the chi angles and testing steric clashes,
then clustered in a 2-level hierarchical process. For each cluster, representative
polyhedral shapes were produced which can thereafter be exploited for ligand
screening.

Keywords: Conformers, Hierarchical Clustering, Structural Determinants, Conformation

Space, Data Mining
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1. Introduction

During the last decades a number of drugs have been launched to the market.
However there is lack of specificity, which can cause various side effects. This
has been the driving force for further research on the design of drugs that
target only their receptors. More specifically the modelling of the binding sites of
macromolecules is a rather demanding task, due to their lack of rigidity. The
discovery of new methods and tools is expected to offer new opportunities.
The current thesis focuses on the finding of structural determinants that dic-
tate binding, which falls within the scope of the Structure-Based Drug Design
approach, by detailed mapping of the cavity geometry. A novel rationale has
been developed for the simulation of the movement of the catalytic site residues,
using data analytics and geometric features. In this manner, an anticipation
towards developing much more accurate affinity predictions for complex
formation and macro-molecular docking is achieved [1]. Emphasis was given
on the analysis of the different conformations in the active site. The manifold
degrees of freedom and the restraints imposed by the backbone increased the
overall complexity. These issues are addressed in the presented methods. The pro-
duction of different conformers is based on the simulation of chi angles rotations
coupled with application of filters to take into account steric clashes. Conformers
are clustered based on a two level hierarchical analysis. A biological validation
with keyword matching techniques of the produced clusters is also available.
Except from the typical clustering of protein structures with the use for super-
position and RMSD distance, a new innovative method is presented: the multi-
dimensional k-means clustering without superposing protein structures. After
the clustering of conformers, representative polyhedral shapes were produced
which defined the local minima and maxima of the XYZ co-ordinates and can
be further exploited in either rational or random ligand screening approaches.
Furthermore, the shapes may also serve as a template that would reveal the
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complementary shape of a potential ligand.

To further aid researches in protein analysis, a series of bioinformatics tools
were developed with functions such as the extension of the currently available
statistical visualization tools, the data mining of present information from online
databases, the optimized simulation for a faster execution with parallel program-
ming methods and the expansion of the active site for surrounding amino-acids
with geometrical and secondary structure considerations.

The drug design efforts based upon the 3-dimensional structure of a macro-
molecular target is considered to be a hallmark of modern molecular design
strategies. The structure-based drug design has already made a significant
impact in the drug discovery process with more than 35 newly approved drugs |
aunched in the market. In the post-genomic era, many important drug targets
are emerging and the structure-based design is expected to offer even more
new opportunities. Despite the market dynamics, structure-based drug design
has not reached its full potential and the newly introduced methods in this area
of research will play a vital role in the drug discovery endeavors.

2. A novel Rationale for the Computation of Conformers with
Clustering Techniques

2.1. Protein Dataset

New types of experiments, such as the “Human Genome Project”, completed in
2003, produced large amounts of data. Various online databases where developed
throughout the years including GenBank [2] and Protein Data Bank [3].

Kinase inhibitors are considered of high importance, as important drug targets
for the development of anti-cancer therapies and much effort has been made
towards the structural analysis of the binding sites of various protein kinases
[1]; they are also involved in a plethora of metabolic pathways. Several studies
have been presented over the years and as it has been reported that the use of a
single kinase structure in docking studies may produce false negative results.
In order to overcome this problem protein multiple structures were taken into
consideration for the analysis; in order to have an adequate number of representa-
tive structures. Thus a dataset of 100 kinases from diverse families was obtained
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from Protein Data Bank [3]. All kinases were related with at least one journal
reference in PubMed.

2.2. Distance Matric Calculation

The comparison of 3D structures is an important task [4] used in finding the
structural evolution of proteins or protein domains [5]. Two different approaches
have been followed in the computation of the distance matrix of the protein set:
a) Computation with Matlab commands, and b) Computation the use of RCSB
PDB Comparison tool [6] with alignment provided from jFATCAT rigid algo-
rithm [7]. Both methods use the Root Mean Square Distance (RMSD), which is
calculated between equivalent atoms in two structures and is the most common
distance metric for the expression and analysis of structural similarity.

2.3. Protein Clustering with Hierarchical Analysis

After the calculation of all pairwise differences of the kinase protein structures,
a hierarchical clustering algorithm will be performed for the production of the
dendrogram that is shown below. From the original clustering, the user can
define the number of clusters based on an input or dynamically by defining
the cutoff of leaf distance from the bottom to the top of the hierarchy. In the
presented example (Fig. 1) the clusters are defined from a cutoff of the 60% of
the tree height. Each cluster is represented with a different color. The role of
hierarchical clustering is vital in the present thesis, as the divide and conquer
computational approach has been followed in conformer analysis. The main aim
of clustering’s usage is the overall reduction of the computational cost and the
limitation of the analysis to structural homologues.
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FigURE 1: Hierarchical Clustering of 100 kinases. Clusters are produced
from a cutoff to the 60% of the maximum leaf height.

2.4. Protein Clustering with Multidimensional k-Means

In this section a new novel method is introduced for the clustering of proteins
sets. The common process is the superposition of each protein with each other
and then the computation of their RMSD distance. Moreover various problems
have been observed in the superposition of different size proteins. Thus, an
effort has been made towards overcoming this problem. More specifically, a
process has been made for the reduction of the overall computational cost by
increasing the problems’ dimensions.

The methodology that was conducted is the following: a) For a list of 100
kinases the Ca trace is computed and the XYZ co-ordinates are kept in a vector
of the following form {X;, X, .., X,, Y..Y,,.., Y,, Z;, Z5, ..., Z,}. b) After the
finish of the process, due to the fact that all vectors should have the same
length, the maximum length of atoms is found and all other vectors are filled
with zeros until they all have the same length. ¢) A multidimensional k-means
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algorithm is implemented. d) For each of the k clusters a hierarchical cluster is
performed based on the distance of each clustered entity to the k-th cluster.
Hierarchical clustering is used in each cluster for the production of local den-
drogram and cannot be implemented to the whole set, due to the fact that the
distance of each entity is computed for the cluster's centroid and there aren't
distances between proteins. Thus the disadvantage of this method the inability
to cluster the clusters to a hierarchy. However it important to denote, that the
implemented process does not use superposition and doesn't compute all pair-
wise distance, instead a reduction in complexity has been made by downsizing
a problem of distance computation from all-vs-all to all-vs-k, where k is the
number of the clusters.

2.5. Clustering Evaluation

In computational biology it is vital to validate results in order to evaluate the
success rate of an in silico simulation. Moreover, the discovery of biological
notion in the provided results is of high interest for the explanation of possible
protein correlations. In this chapter a novel approach has been developed for
the “biological validation” of protein clustering results with text mining
techniques. With the term “biological validation” an answer is given to the ques-
tion of the “How closely related are two proteins from biological aspect?”. The
initial approach was to find correlations in the PDB file’s description; however
with this technique higher complexity and “noise” existed. Thus a simpler and
more accurate approach was followed. More specifically, as it can be easily un-
derlined from the following table, certain textural similarities exist among the
protein kinase set according to their keywords. Hence, for each cluster of the
previous subchapter, all possible pairwise combinations between proteins were
undertaken and for each pair 1-vs-all comparison was made for each keyword
of the one protein with the other. If the keyword were the same, then at the
corresponding position of the pair, in the scoring matrix of the specific cluster
the score was increased by one. In this manner, in a protein set (a provided cluster)
if two proteins have at least one corresponding textural correlation (two
keywords were the same), then their clustering in the same group was made
right. In the keywords of a PDB id, the protein family will be referred in most
of the cases. Thus the possible correlation of keyword matching, will refer
probably to the same protein family notion. In order to provide even better
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results the keyword “kinase” was removed in a pre-processing operation.

For the dendrogram mentioned previously, the following table shows for each
cluster the number of proteins that didnt had a match with any keywords of
the other proteins of the specific cluster, along with the number of “proper
biological clustering”. The last term means for the case of the first cluster that in
9 protein structures, the 1 was found “irrelevant” from biological aspect, thus
the 8 proteins or 88.99% were biologically clustered in a proper manner.

Table 1: Validation results for multidimensional k-means

Number of non-

Cluster Nurmb Number of | ‘ Percentage of proper
uster Number proteins in the cluster r.e evan biological clustering
protein structures
1 9 1 88.89
2 50 0 100
3 5 2 60
4 6 1 83.33
5 6 0 100
6 13 0 100
7 4 1 75
8 5 0 100
9 1 1 0
10 1 1 0

2.6. Selection of Catalytic Site Vicinity

The detailed information of the catalytic residues of the enzyme active site and
the residues in the vicinity are essential in understanding the relationships of
protein structure and its functions [8].

The CSA (Catalytic Site Atlas) provide curated annotations for 968 protein entries
that have been deposited with the PDB [3] and uses a sophisticated method for
transferring the annotations the homologous structures increasing the robust-
ness of annotation transfer. Moreover the curated entries are used along with
sequence comparison for the generation of 3D templates of the catalytic sites,
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which can thereafter find catalytic sites in new structures [8].

The develop program, initially receives a user-defined PDB id input from a
simple GUI. Subsequently the possible catalytic site is extracted with the use of
text mining techniques and regular expressions. The available sites are therein
presented in a menu of choices, where the user selects based on his/her
preference. In this manner, the conformation analysis that will be described in next
steps can take place in any given residues of a protein structure.

In many studies, the surrounding residues of the active site, may affect the
inhibitor, even from distal position in an unclear manner. Mutations may hurt
the conformational equilibrium, which could result in weaker binding [9].
Thus it is important to take into consideration the surrounding region of the
catalytic site. According to literature, various techniques haven been used in
pocket recognition and could also be used to the expansion of the catalytic site
including grid based approaches, sphere coating approaches and alpha & beta
shapes [10].

Four approaches have been developed for the identification of the active site’s
neighboring residues: a) User defined sphere b) Minimum volume enclosing
sphere ¢) Minimum volume enclosing ellipsoid and d) Inflated Alpha shapes.
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Figure 2: (a, b). Minimum volume enclosing ellipsoid. The blue atoms
suggest the residues of the catalytic site.
(c, d). In green the original alpha shape is shown. The blue spheres
represent the atoms of the catalytic site residues.
After the inflation of the alpha shape by 30% which is shown in
turquoise the yellow atoms of the surrounding residues are part of the
new shape. Thus the catalytic site is extended by three new residues.

For the choice of the user defined sphere a simple GUI asks for the sphere
radius. After the definition of the radius, the program finds the centroid of the
active site’s atoms and draws a sphere. Thereafter, all atoms of the protein
structures are checked on whether they are part of the geometric shape. For those
atoms that are part of the shape its corresponding amino acid is added to a list
of neighboring residues. The other option is to define the minimum volume
enclosing sphere. With this method the sphere encloses the minimum space that
can have so the total of all points (of the active site residues) can be enclosed.
Another option is the minimum enclosing ellipsoid. This method is operated
in exact the same way with the minimum enclosing sphere with the difference
that the shape is an ellipsoid. A classical reference to the definition of ellipsoid
is the given in [11]. For the computation of minimum volume enclosing ellipsoid
the open source program MinVolEllipse has been used [12].

The main difference between the minimum volume enclosing ellipsoid and
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enclosing sphere is that due to topological particularities the ellipsoid may
reduce the “noise” of non-relevant residues that could be selected from the
sphere. Thus, the ellipsoid will reduce the number of selected residues and increase
the accuracy (Fig. 2a, Fig. 2b).

The last option is the selection of surrounding residues based on alpha shapes.
This method is even more subtractive in the selection of other residues that are
not in the active site, this occurs due to the fact that the rolling ball will minimize
the available space between the atoms of the catalytic site residues that conform
triangles. Thus the selection of the rolling ball radius is vital for a proper use of
this method. The radius should not be relatively small, as it will create separate
shapes for the residues.

In this method, to ensure that all atoms are part of the same shape the maximum
of all pairwise atom distances was selected as the radius of the rolling ball. In
sequel an outwardly inflation of the polygonal shape is performed. As it will be
shown in the following picture the inflation of the alpha shape of the catalytic
site encapsulated new atoms from surrounding residues (Fig. 2c, Fig. 2d). The
inflation was made by scaling the original coordinates of the atoms of the
catalytic site by 30% and then from XYZ coordinates, the centroid difference
(of the original and the inflated point-clouds) was deducted. In this manner, a
shifting to the original centroid for the inflated point-cloud was made. From the
inflated point-cloud the new alpha shape was computed and shown along with
the original one (Fig. 2c). Hence it can be concluded that this method provide even
more specificity in the expansion of the catalytic site in an automated manner.
This method is vital in the reduction of the available degrees of freedom for the
production of the conformers.

2.7. Probabilistic Computation of Rotamers and Fast Computation of
Non-Steric Conformers

During the structural analysis of a protein it is important to focus on the active
site and its topological & geometric characteristics. In this section particular
attention was given to the production of different conformers at the catalytic
site. The different side-chain conformations are produced based on a proba-
bilistic selection through the online rotamer library of Dynameomics [13].
At a glance, rotamer libraries show the probability distribution of an observing
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residue for a given rotamer. According to the literature, there are two major
libraries a side chain only library from Richardson laboratory [14] and a library
that includes main chain conformations of Dunbrack laboratory [15]. As stated
in [13] “But these techniques are not without their own problems. The crystal
structures themselves, and especially the filtering techniques employed, may
yield an overly static view of protein structure. Flexible proteins that crystallize
at lower resolution or inherently flexible amino acid conformations with high
B-factors are excluded. The libraries use crystal structures instead of solution
structures and may suffer from artifacts such as crystal contacts, effects of
crystallization conditions, or changes from mutations or truncations necessary
to improve crystallization quality. In addition, the number of structures
determined under cryogenic conditions is increasing, which can also skew the
distributions”. Dynameomics library simulate the native state and unfolding
behavior of representatives of all autonomous protein folds. More particularly
807 proteins were analyzed, totaling 86.217 residues with at least 31.000
samples of each residue (2.7x109 rotamers). Thus for the above reasons
Dynameomics library was selected as for our in silico simulations.

Initially the program accepts as an input a PDB id and downloads its structure
from PDB [3]. Then the user is asked to give a probability cutoff for the
extraction of the chi angles from the site of Dynameomics [14]. From the avail-
able chi angles only those that have a probability above the selected cutoff, will
be selected. The chi angles for all aminoacids are downloaded and can be used
of active site expansion. After the selection of residues of the active site, user
is asked on whether to extend or not the active site. After all the previous
stages, the process of the different conformers is initiated. At first, all possible
combinations from the probable rotamers between aminoacids are com-
puted. Thus after the produced list of the determined chi angles for the specific
residues of the (extended) catalytic site, for each combination every amino
acid is taken and the chi 1 to chi 5 (chi angle number depends on the amino acid
type) angles are sequentially changed by the difference of the rotamer probability
matrix with the specific chi angle. Moreover, after the end of a combination of
chi angles, a steric clash identification process is initiated.

As it can be easily derived from the aforementioned pipeline, the conformers
simulation is a computationally demanding process. For example for the case
of 13PK protein structure by extending the catalytic site with the minimum vol-
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ume enclosing ellipsoid method, 13 amino acids would have been selected for
analysis and subsequently 150 billion different combinations would be needed
for a complete computation. This, would be unfeasible from points of memory
and computational time. The computational cost for distant amino acids could
be avoided through a divided and conquer approach, where the computational
cost could be minimized via a dimensionality reduction. Initially, a hierarchical
clustering has been performed between amino acids to identify those lying close
in the 3D space. For the lower clusters of the hierarchy, all possible combinations
of the conformers were calculated. Hence, consecutive merging of all sub-clusters,
was performed as moving from the bottom to the top of the hierarchy, until
only one group exists. The process described was further accelerated by
employing multithreading techniques. All non-steric conformers are saved in PDB
file format for a further analysis or visualization through other programs.

2.8. Conformers Clustering with Iterative Closest Point Alighment

Previously, the process of the calculation of conformers was shown. As men-
tioned the conformers were exported as PDB files. In this chapter an effort will be
made for the clustering of conformers and the analysis that derive. Initially from
the previous-referred hierarchical clustering of the 100 kinases 10 clusters have
been produced as it was shown. For the cluster of the following image all different
conformers were produced totaling 107,016 in number approximately 20,000
for each protein. Several issues have reported over the years with the typical use
of RMSD from superposition (rotation, translation) due to the fact the number
of atoms may vary [16]. Thus the Iterative Closest Point (ICP) technique has
been used the alignment of the point clouds of the conformers. As referred to
[17] “ICP aligns and registers an unlabeled set of point p to a model set X
by iteratively alternating between registration and alignment steps. Registration
is obtained by finding the closest point y € X to each point p, € p, resulting in
the corresponding set Y. The point clouds are aligned by finding the optimal
rotation matrix and translation vector that superposes p onto Y. The steps
are repeated until the change in mean square error between p and Y falls
beneath a desired threshold”. ICP have been also used instead of the DALI
alignment in [18]. After the alignment the RMSD has been used for the calcula-
tion. It should noted here that the divide and conquer approach is also present
during this methodology. The initial cluster of 100 kinases provide the ability to
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make a 2-level clustering. In this manner, the clustering of the conformers is
simplified and more problems regarding the different size of atoms are usually
overcome due to the fact that the clustered proteins are rather structural similar.
In other approaches the energy calculation is used for the selection of conform-
ers. In the presented method, this issue is addressed in a more statistical way
through the computation of the exemplars of the clusters. Assuming that 10% of
the conformations would be selected as the cluster exemplars, the maximum
number of leafs is set to this metric. Each leaf has an index matrix, which contains
all corresponding conformers ids. Thus for each leaf the median value of a local
distance matrix is selected as exemplar.

2.9. Visualization of Structural Boundaries

For a larger dataset of kinases and consequently conformers it is considered
important to understand the results of the hierarchical clustering from a
structural point of view. Towards this, alpha shapes have been used for the
structural representation of each cluster. In this manner an overview can be given
regarding the movements of the residues. The 3D polygonal shapes shown in
Fig. 3, can been further exploited in either rational or random ligand screening
approaches. In additional, it would also serve as a template that would reveal
the complementary shape of a potential ligand. More specifically, the above
alpha hulls represent the local minima and maxima of the XYZ co-ordinates for the
selected group of conformers. With the knowledge of such information, ligands
may be designed in a more efficient manner by taking into consideration the
new-derived topological restraints. In practice, if the alpha shapes have a chan-
nel - like shape, ligands of circular shape will not bind properly. The derived
ligand scaffolds could act as stable structural motifs that could contribute
towards the development of much more accurate binding affinity predictions
for macro-molecular docking. The conformational stabilization of the catalytic
site from the interior which residues could adopt would favor ligand binding
with structurally compatible ligands, while leaving most of the exterior amino
acid side chains accessible to solvent. Hence, a proper modeling of binding cavity
may utilize even more functional protein structures.
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Figure 3: Representative alpha shapes for 2 clusters of the hierarchical
analysis of conformers. For rolling ball of radius = 2.0 A, 3.0A and 4.0A.

3. Conclusions

The different geometrical methods that were used to expand the catalytic site
provided a better understanding of the surrounding region and the identification
of the cavity. However the increased degrees of freedom of the side-chain angles
for an adequate number of residues (>10) is still a computational demanding
process. Our divide and conquer approach in the conformers’ simulation reduced
dramatically the overall execution time and could reinforce the in silico experi-
mentations. The same methodology of simplification was implemented in the
2-level hierarchical clustering of conformers. Initially 2 methods of clustering whole
proteins were used: a) classic superposition of proteins for pairwise RMSD
distance, then hierarchical clustering, and b) multidimensional k-means for
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partial clustering that ignores pairwise distances and superposition. Both
methods were validated with a keyword matching method and provided accept-
able results, namely a large number of proteins in each cluster are of the same
family. Method (b) provided a better distribution of the clusters and a faster
execution and seemed promising. For a cluster, different conformers were
constructed and then clustered. It was found that conformers of close
structural similarity are entangled in a similar way with their parent - proteins.
Thereafter for each cluster of conformers representative polyhedral shapes
were produced and can outline the local minima and maxima of the XYZ coordi-
nates and could be exploited in ligand screening or for the design of the com-
plementary shape of a potential ligand. These structural determinants may
contribute in more accurate affinity predictions for docking. However the proper
selection of the rolling ball radius in the alpha - shapes method that was used
still remains unclear.
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1.

Tplodldotateg Kataokeueg pe Xprion Mpokaboplouevwy AoLKWY YTolyelwy - . Xpuolvag

Etcaywyn

Yridpyxouv SLa@opol AOyoL yLa TOUG OTIoloug HPTopPEL Kavelg va ypeltaletal va
TpOypappa Tou ToToBeTel €lKOVIKA TOUBAQ Ot €va TPLOSLACTATO HOVTEAO.
Karmotot Adyol Ba prtopoucav va givat:

Anpoupyla UG TOURAWVY yLa TO XPWHATLOPO TOU JOVTEAOU EVOG KTLpLOU.
Mpooopolwaon Kataokeuwv ato ToURAa yla PeAETN TNG otabepdTNTAG TOUC.

YTIOAOYLOPOG TwV BE0EWV TWV TOURAWV yLa TO XTLOLO TOUG Ao KATIOLd POUTIO-
Tkn) dlataén.

TNV KABe TePlTTWON, £XOUPE SLAPYOPETLKEG ATIALTIOELG ATIO TO TIPOypappa. MNa
TapAdelypa otnv TePLITTWon NG UPNG SeV PAG EVELAPEPEL O ECWTEPLKOG OYKOG
€VOG TOlYOU, OAAG POVO TO OxeSLO TIOU TIPOKUTITEL OTNV ETILPAVEL, QAAA AUTO
Sev LOoYUEL OTLG U0 AANEG TIEPLTTTWOELG. TNV SeUtepn TEpitwon &gV PAXVOUHE
TN PBeAtiotn tomobETnon Twv ToURAWY, aAAA TIpooTIaBoUPE va TIPOCOHOLWOOU-
HE TOV TPOTIO XTlolpatog evog avBpwrou. Emiong Ba pmopovoape va dexBoupe
MLKPEG TIAPATUTILEG OTLG SLAOTACELG TWV TOURAWV.

H tpitn mepimtwon elval autry otnv omola MANoLAleL TIEPLOCOTEPO Kal n UAOTIOL-
non autng tng epyaciag. Edw oL podlaypages PTopoUpE va TIOUHE OTL lvat oL
egne:

Fvetal xpron ToUPBAwV TIPOKABOPLOPEVWY SLACTACEWV Kal €vog aplBuou
OTPOYYUAWV UTTOSLALPETEWY AUTWV.

Auotnpr TrpnNon Twv SLACTACEWV TWV TOUPRAWV. ZTOV TIPAYHATIKO KOOHO Ta
TOUPBAa Kataokeudlovtal HE TUTIOTIOLNUEVEG SLACTACELG OTIOTE TIPOPAVWG
S€V TIPETIEL VA ATIOKALVOUPE aTU QUTEG,.

ATtayopevovtal oL ETILKAAUELG HETAEL TwV TOURAWV. AUTO lval TIpoPaveg OTL
Sev oupBalvel TTOTE OoTOV TIPAYHUATIKO KOOpOo. ‘Otav Opwg ta TouPAa avarapt-
otwvTtal amAd anod aplbpoug otn Pvrun Ttou uttoAoyloth, xpetadovtal oAAol
gAeyxoL yla va BeBatwboupe 6Tl ev UTIAPYOUV ETILKAAUPELG HETAEY TWV OYKWVY
TOUC. AMLWG otav £pBel N wpa tng TomoBEtnong Twv aAnBwvwy TouBAwv Ba
SLATILOTWVOULE OTL 8gV UTIAPXEL SLABETLUOG XWPOG.

H tomoBétnon twv ToURAWV ylveTal Pe TETOLO TPOTIO WOTE VA £XOUME KAAN
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TIAEEN PETAEL TOUC. AUTO €£a0aAilel Tn otabepoTnTa VO TolYou.

To TPWTO OKEAOG AUTNG TNG epyaciag Aaufavel utiOPLv TOU TA TAPATIAVW.
H ulomoinon exeL yivel oe C++. H €loodog elval €va povieAo To oTolo €xeL
oxedlaotel og kaAmolo Tpoypappa tplodidctatng oxedlaong (AutoCAD, 3D S
tudio, Blender3D kAm). NMavw oto TEPIPANPA autol Tou PovtéAou tottoBetoupe
Ta touBAa. Baolkr} polmoBeon yla va slval otepen N TEALKN KATAOKEUN €lval
KaL n owotr) oxedlaon tou apyLlkoU HOVIEAOU. AV yla TIAPASELYPA TO HOVIEAO
TIEPLEXEL TOLYOUG HE MEYAAN KALOn, TO TPOypaupa autng tng epyaciag Ba
TomoBetnoel Kal ekel TOUPRAQ, xwplg Opwg va Slvel omoladnmote eyyunon yla
Tn otabepotnta tou amoteAéopatoq. Asv yivovtat dnAadr) TPOTIOTIOLACELG TO
apxLlkd oxNUa wote va eEacailoBel emmAéov otabepotnta. Me auto to Bpa
acxoAsital pla aAAn epyaotia, n [1].

Ma va augnBel n otabepdTnTa TNEG KATAOKEUNG TIPETIEL TA TOUPRAA va sivat 6oo
To Suvatov KOAUTEPA TIAEypeEva PETAEU TOuG. ©gAoupe dnAadr Ta AKpa €VOG
ToUBAoU va Bplokovtal TEPITToU TTAVW atd TO PHECO TwV TOURBAWY TOU aTo KATW
eTLTESOU. AUTOG €lval 0 TPOTIOG XTLOLPATOG TIOU £pxeTal aubopunta oto PUaAO
OAWV. TN TPAYHATIKOTNTA UTIApXOoUV TToANOL dAAOL TPOTIOL XTLolPaTOog Tou N
gpappoyn toug elvat katdAnAn avaloya pe tnv mepimtwon [4]. O Tpomog
XTLOLPATOC TIOU avagépape €lval yvwotog Pe Tov 0po «SPOWLKN TolyoTtoLiax»
(stretcher bond). Autog elvat o Lo amAog TPOTIOG XTLOLMATOC, KAl £XEL TNV TILO
YEVLKEUPEVN XPNon. To BACLKO OKETITIKO TOU OAyopiBuou TIOU XPNOLUOTIOLOUME
yla va (TACOUKPE OE QUTO TO ATIOTEAECHA, €lval TO €&NG. OEWPOUPE TLG EVWOELG
HETAEU TWV TOoUPRAWV WG ta aduvaua onueia evog tolxou kat @povtidouue ot
SladoyLkda emtimeda va elvat 000 TILo AToPaKPUOPEVA YiveTal JETAEL TOUG,.

Elte €va toilyog elval emimedoc, €lte eAaPpPWC KAUTTUAWHPEVOUG, XPNOLUOTIOLOU-
HE TO (8l0 OKETTIKO yLa TNV TomobeTnon Twv ToURAWV. ATTAA O€ €vav KAWTIUAO
Tolxo ta ToURAa Sev epATTOVTAL ATIOAUTA AAAA AQAVOUV KATIOLA KEVA WOTE va
akoAouBrjoouv tnv KapmuAotnta. ‘Evag tolxog opiletat amd  Sladoxka
€UBUYpaPUA TUAMATA, TA OTIola AV £XOUV HLKPEC SLAPOPEC OTOV TIPOCAVATOAL-
OPO TOUG PTIOPOUV VA SnNULOUPYHOOULV TIPOOEYYLOTLKA KAPTIUAOUG Tolxoug. ‘Opwg
av n ywvia petagu duo Sladoxkwv eVBLYPAPPWY TUNUATWY, lval HeyaAuTePN
aTio KATIOLO OPLO TIOU €XOUE €TIAEEEL, TOTE ekel €youpe pla ywvia otov tolyo.
2TIC ywvieg ta ToUPAa TpETEL va ToTtoBeTNOOUY pPE SLAPOPETIKO TPOTIO. ZE
€vav amAo TOLYXO Ol PLKPEG TIAEUPEG TWV TOUPBAWVYV AKOUUTIAVE PETAEU TOUG. ZTLG
YWVLEC TWV KTLPLWV OPWG, EXOUME TLG PIKPEC TIAEUPEC TWV TOURAWVY va pdarntovtal
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HE TLG PEYAAeC. H ToTtoBETNOoN TWV TOUPBAWY TIPETIEL VA EEKLVAEL ATIO TLG YWVLEG
KAl amattouvtat eldlkol utoAoylopol ywa tnv owoth tomobétnon. Mapduolo
OKETITLKO LOYUEL KAl OTLG SLAOTAUPWOELG TOLXWV.

2. IXeTwKEG Epyaoieg

« H epyacla [1] aoxoAsitat pe TNV PeAtiotomoinon TwV YEWHETPLKWY
XAPOKTNPLOTLKWY EVOC KTLPLOU WOTE va lval EQLKTNA N KATACKEUN) TOU PE Xpron
TOURAWV.

* Ta projects [2] kat [3] acxoAouvtal Pe TO XTLOLWWO TOUPBAWV aTIO POUTIOTIKA
ouotAPata. ITNV TPWTn TEPIMTWON XPNOLUOTIOLElTAL €vag POMTIOTLKOG
Bpaxlovag Tou xtidel ToUPAq, evw otnv deltepn n tomobetnon ylvetal amod
HLKPA EALKOTITEPAKLA TIOU HETAPEPOUV €va €va Ta TOURAA Kal ta agrjvouv
OTLG KATAAMNAEG BEOELG. AUTEG OL EPYAOLEG EXOUV EPEUVNTLKO — KAAALTEXVLKO
Xapaktrpa. Ol TTapakdATtw ELKOVEG TIPOEPYOVTAL ATIO AUTEG TLG SU0 EPyastied.

Ewkova 1: Popmotikeg Stata&elg xtioipatog touBAWY

« Ta robot Hadrian [5] kat SAM [6] avamtUocovtal Pe OKOTIO T ypryopn
KATAOKEUN TIPAYMATIKWY KTLplwv amo touBAa.
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Ewkova 2: ApLotepa: Fastbrick Robotics Hadrian kat 8€&La: Construction
Robotics SAM

3. MeOBodoAoyia ELkoviLKoU KtLoipatog

2T TIAPAKATW ELKOVA PBAETIOUPE CUVOTITLIKA Ta Brjpata Tou alyopiBuou.

Ewkdva 3: Ta Brypata tou alyopibpou
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2Tn apxn QOPTWVOUNE TO TPLOSLACTATO POVTEAO amod eva apyelo .obj (BrApa 1).
To TPWTO TpAyHa TIoU KAVOUME €lval va To «kooupe» og opLlovtia ermimeda
TIOU ATIEXOUV PETAEU TOug 000 To UYPOoC evog TouPAou (Brpa 2). Etol o€ kabe
eTMESO £YOUE Eva TTEPLypaupa To oTtolo amoteAeital amno eubuypaupa TuRUata,
TIAvw oto ottolo Ba tomobetriooupe ta TouRAa.

To emopevo PBripa slvat 0 YWPLOPOE aUTOU TOU TEPLYPAUMATOG OE ETILHEPOUG
TyAUata avaloya pe to Tou evtomifoupe ywvieg (BApa 3). Za ywvia edw
Bewpolpe, elte onpela ota omola Slactaupwvovtatl 3 1) TEPLOCOTEPOL TolxOL,
elte onpela ota omola n KAPTIUAGTNTA TOU TIEPLYPAPPATOG €lval TIOAU PEYAAN.
Ta onpela autd ta Aége nodes KAl TO TPAPA TOU TIEPLYPAMMATOC PETAEL SUO
nodes to Aépye path. Ta nodes @ailvovtal Xpwpatlopeva otnv 3n €lkdéva Tou
Tapamnavw Slaypaupatod.

2Tn ouvéxeLa yla KaBe emimedo umoAoyiloupe Twg Ba ylvel n tomobetnon twv
TOUBAWV ota nodes wote va slval ocwota mAeypeva (Brpa 4). Ztnv mapakdtw
ElKOVa PBAETOUPE TWG yivetal to TAEEPO TWV TOUPRAWV o nodes pE HEXPL
4 Tolyouc.

Ewkova 4: TortoB£tnon ToUBAWVY O€ YWVIEG KAl EVWOELG TOLXWV

Aol EekaBaplooupe TU ylvetat ota nodes TOTOOETOUPE KAl TA ECWTEPLKA
ToUBAa ota paths (Brpa 5). H tomobetnon twv €0WTEPLKWY TOUPRAWY Yyivetal
uTtoAoyiovtag TNV TEEPLOTPOPT) TOU TOUBAOU WOTE va akoAOUBEL Tnv Topeia Ttou
path. Kabe kawvouplo touBAo opiletal amod Vo onuela. To €va akoupTIdeL OTO
Tiponyoupevd Tou kat utoAoyifoupe tn Beon tou SeutEPOU, WOTE AUTO va
Bploketal mavw oto path. ZTnv mapakdtw £lkova BAETOUUE TO TIPWTO onpelo
ONMELWHPEVO PE KOKKLVO KAl TO SEUTEPO HE TIPACLVO.




Tplodldotateg Kataokeueg pe Xprion Mpokaboplouevwy AoLKWY YTolyelwy - . Xpuolvag

Ewkova 5: TortoB€tnon toUBAwV o€ €va path

Ertlong mpEmeL va emAEEOUPE TIOLO aTIO TA TIPOETIAEYUEVA Pnkn Ba xpnotuo-
TIOL)OOUE yla TO KABs ToURAO0. ETIIAEYyOUPE QUTO TIOU TIPETIEL WOTE TA AKPA TOU
ToUBAou va Bplokovtal 600 TILO Pakpud ylvetal amd ta akpa Twv ToURAWV Tou
amo KATw ETUTESOU, apoU autd eltape OTL BewpoUpe wg ta aduvapa onpeia
€VOG Tolyou KaL BgAoupe va pnv Bpilokovtal kovtd petafl Toug. XTnV Tapa-
KATW €lkova PAETIOUPE TLG SOKLPEG yua ta 4 Slabeoiya pnkn touBAou Tou
HTIOpOUPE va xpnotporolooups. MNa kabe €va Pplokoupe ta onuela 1ou TO
oplfouv. TeAKA €6W ETIAEYOUPE QUTO MPE TO 30 EMLTPEMTO HAKOG, QQOU TO
TeAelwpd tou PBploketal pakputepa amd OAa ta adVvapa onuela Tou amo KATw
eTLESOU, Ta omola elval onpelwpéva pe Kitpvo.

Ewkova 6: ErttAoyr] KatdAAnAou PAKOUG yLa TO KawvoupLlo TouBAo
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H tomoBEtnon Twv €0WTEPLKWY TOUPRAWY Slvel TO BEATLOTO aTIOTEAEOPA AKOUA
KAl Pe tn xprion greedy mpoogyylong. Asv xpelddetal Tote va avabewpr)ocoupE
Tn B€on kamolou TtoUPAoU TTou ToTtoBeTAoapE. Asv LoXVUEL OPWC To (8Lo Kal yla ta
TOUPBAQ OTLG YWVIEG/EVWOELG TolwVv. Ekel xpelaletal KAmoLa EMAVAANTITLKY TIPO-
O£yyLon yLa TNV eVPEON TNG BEATLOTNG TOTIOBETNONG. Z€ AUTO TO onpelo Bploketal
KaL N peyaAutepn aduvapia tng epyaciag pag.

A@oU yivel n tomtoBETnon Twv ToURAWV palevoupe o€ pia Alota 0Aa ta aduvapa
onpela autou tou emuedou ylatl Ba pag xpeLactouv Katda tnv TomobEtnon Twv
ToURAWV TNG anod Avw oTpwaong (Bripa 6).

ApoU oAokAnpwBel n tomobetnon twv toUBAWV oe OAa ta emimneda, Pplokoupe
Tota ToUBAa s@dmrtovtal PeTally SU0 SLaSOXIKWVY ETILIESWY KAl TTOCO €lval to
eUBasdoOV NG emupavelag smagng (Bripa 7). To epBadov autd pag Seixvel tOco
oxupn €lvat n kaBe evwon. Autr) n TAnpowopla xpnolpotoleitat apydtepa
yla TNV €KTEAECN TNG TIPOCOPOLWONG PUGLKNG TNG KAtaokeung. Xwplg autr) tnv
TIANpoWopila To amotéAeopa Tng Tpocopoiwong Ba epolale oav otolBa amo
ToUBAQ kaL OXL oav XTLOPEVOC TOLXOG.

2TN ouvexELa amoBnKeVOUPE Ta ATIOTEAEOPATA OE eva apyelo .csv (Brpa 8) kat
egpavidoupe To amotéAeopa pe xpnon OpenGL (BrApa 9). H mapouciaocn twv
ATIOTEAECHATWY PAlVETAL OTLG TIAPAKATW ELKOVEG,.




Tplodldotateg Kataokeueg pe Xprion Mpokaboplouevwy AoLKWY YTolyelwy - . Xpuolvag

Eltkéva 7: MapoucLdon amoTtEAECUATWY

TNV Tapamdavw €Lkova, KAtw &eELa PAETIOUPE PE xpwpata Ta paths tou £xouv
TIPOKUYEL aro Toug Toug Tolyoug autou Tou KTipiou.

4. TMpocopoiwon PUGLKAG

Mla va KAVOUPE TNV TIPOCOHOlwon (PUOLKNG TNG KATAOKEUNG HAG, (POPTWVOUME
Ta &edopeva amo to apxelo .csv oto Blender (eva Open Source mpoypapua
Snuloupylag tplodldotatwy ypaplkwy). Ekel umtapxel evowpatwpevn n BLBALo-
Bnkn Bullet Physics n omola pag &lvel OtL xpelalOPaocte yla TNV Tpocopoiwan.
Ta toUPAa avamapiotavtar amnod Rigid Bodies, pe Collision Box oyxrjupatog opbo-
ywviou mapaAnAemiiiedou. OL evwoelg avanapiotavtal anod Fixed Constraints
HE evepyoTolnuevn tnv emAoyn Breakable os Threshold mou egaptdtat amo
TNV oxL NG KABe €vwong. To QOopTwpa Twv Sedopevwy, n Snuloupyla Twv
QVTLKELPEVWV Kal N pUBPLON TWV TTapapeTpwy yivetat pe eva Python script.

To Blender gktog am’ tnv TpPocopolwon QUOLKAG pag Sivel tn duvatotnta
KAAUTEPNG TILO PEAALOTLKIG ATIELKOVLONG TWV ATIOTEAECHATWY, OTIWG PALVETAL OTLG
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TIAPAKATW ELKOVEG.

Ewkova 8: Rendering pe xprion tng Cycles Engine tou Blender

Mapakdtw @aivovtal KATola OTLyPLOTUTIa Tng Tpooopoiwong. Itnv Tpwtn
TepMmTwon ayvooUpE TIG eVWOELG HYETAEU TwV TOURAWV evw otn SeUTEPN TLG
XpnotuotoloUpE. Bivteo tng mpooopolwong uttdpyov ota rtapakdtw links:

https://www.youtube.com/watch?v=1Q7dc0ETnpU

https://www.youtube.com/watch?v=n22Xt9DX7ZE



https://www.youtube.com/watch?v=1Q7dc0E1npU
https://www.youtube.com/watch?v=n22Xt9DX7ZE

Tploblaotateg Kataokeveg pe Xprion Mpokaboplopévwy AopKwy 2Tolyelwy - T'. Xpuaolvag

Eltkova 9: ZTLypLoTtuTia amno TLG TTPOCOUOLWOELG PUGLKNAG
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5. Zupmepacpata

Wayvovtag oto Aladiktuo pmopel va Bpel Kavelg Pepka Tpoypdupata ya tnv
TomoBEtnon ToUBAwWY. OPwE Ta TEPLOCOTEPA PTIOPOUV va Xpnotporolnbouv os
KATAOKEUEG PE TIOAU TUTIOTIOLNHEVO OXNHA.

Ertlong untdpyxouv oto ALaSIKTUO APKETEC TIPOCOPOLWOELG PUOLKNG OE KATAOKEUEC
amd toUBAa. AMA OTLG TIEPLOCOTEPEG TIEPLTTWOELG dev AauBdvovtatl uttoPy ot
EVWOELG PETAEL TwV TOUBAWV KAl Ol KATACKEUEG £XOUV KATIOLO TIOAU amAd oxnua
TIOU CUVNBWC EXEL TIPOKUPEL SLASIKAOTLKA.

To TAEoVEKTNPA AUTAG TNG epyaciag sivat OtL n tomobetnon ToURAWV ptopel
va ylvel o€ eva poviého aubaipetou oxrpatoc. Emiong ylvetal uttoAoylopog Twy
EVWOEWV PETAEL TWV TOURAWY, OTIOTE TO ATIOTEAECHA TNG TIPOCOPOLWONG avTarno-
KPLVETAL OTNV TIPAYHPATIKOTNTA O€ PEYAAO Babuo.

Y& eva dnuooieupa otnv pnuepida «NautepmopLkr» otig 18 ZenteuPpiou 2015,
avagepovtal ta €ENG:

“ta 12 petpa UYPog TPOKELTAL yLa tov peyaAutepo delta 3D printer
OTO KOOWO, Kal €lval kavog va EKTUTIWOEL OAOKANpa ormitaf...] o
EKTUTIWTNG €lval KATL TTIOAU TTapamavw amod TNV «amAn» Tpaypatornoinon
gvog ovelpou, av okeptel kavelg OTL pExpL To 2030 oL amaltnoelg 6oov
apopd ota omitia Ba €youv augnbel katakdpua ElEbvwe- pe TIAVW
aro 4 &lo. avBpwtioug va {ouv PE €TNOLO €0 dnua KATW Ttwv 3.000
SoAaplwv. Ta Hvwpeva EBvn, avagepetal OYETIKA, UTtoAoyilouv OTL
pveoa ota emopeva 15 xpovia Ba umdpxel n avaykn ywa 100.000 vea
omiitia nuepnoiwg. H opada WASP Tipotelvel Tn OUYKEKPLPEVN ETILAO-
yn ywa ormitia xapgnAol KOoToug, oto mAalolo plag «MakerEconomys,
OTIOU TA TIAVIA UTIOPOUV VA KATAOKEUAOTOUV HEOW SLapolpalOpeEVWV
AVoswv. [...]"

MdAAA\ov to xtiowo pe ToUPBAa lvat TLo TALPLACTO yLa TNV KATACKEUN KTLplwv,
ar’ OTL n tpLodlactatn ektuTwon. OuclaoTika OTwe evag 3D printer ag@rvel
OTAYOVEC KATIOLOU UALKOU Of OUYKEKPLUEVEG BEOCELG, €TOL KAl €va POMTIOT TIOU
xtieL, Tomobetel kAmola toUPAa O CUYKEKPLUEVEG BECELG. MTTIOPOUPE va TIOUPE
OTL QUTA Ta 8U0 £X0UV TTApOpoLa XPror, AAAA o€ SLAPOPETLKY KALUaKA.

Av LoxyUouv Ta Tapamnavw, Tote (owg og KAmola Xpovia va XpnothoTiolovvtal
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POUTIOT Tou XTL{ouV TOUPAQ, PE OKOTIO TO PAdLKO XTLOLHO KATOKlwv. MNa va
ylvel o umoAoylopodg Twv Becswv twv ToURAWY, Ba xpelalovtal Tpoypappata
TapopoLa Pe autd Tou avantuyxBnke o€ auth tnv epyacta.
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