
 

 

ΕΕΠΠΙΙΛΛΕΕΓΓΜΜΕΕΝΝΕΕΣΣ   

ΠΠΤΤΥΥΧΧΙΙΑΑΚΚΕΕΣΣ  &&  ∆∆ΙΙΠΠΛΛΩΩΜΜΑΑΤΤΙΙΚΚΕΕΣΣ  
ΕΕΡΡΓΓΑΑΣΣΙΙΕΕΣΣ  

 

 

 

 

 
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 
Εθνικόν και Καποδιστριακόν 
Πανεπιστήμιον Αθηνών 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & TΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 

 
Τόμος 14 

 
ΑΘΗΝΑ 

2017 



 
 

 
 
 

ΕΕΠΠ ΙΙΛΛΕΕΓΓΜΜΕΕΝΝΕΕΣΣ   
ΠΠΤΤΥΥΧΧ ΙΙ ΑΑΚΚΕΕΣΣ   &&   ΔΔ ΙΙΠΠΛΛΩΩΜΜΑΑΤΤ ΙΙ ΚΚΕΕΣΣ   

ΕΕΡΡ ΓΓΑΑΣΣ ΙΙ ΕΕ ΣΣ  

 
 

Εκδίδεται μία φορά το χρόνο από το: 
 

Τμήμα Πληροφορικής και Τηλεπικοινωνιών 

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, 

Πανεπιστημιούπολη, 15784 Αθήνα 

 

 

Επιμέλεια έκδοσης: 

Επιτροπή Ερευνητικών και Αναπτυξιακών Δραστηριοτήτων 

Θ. Θεοχάρης (υπεύθυνος έκδοσης), Καθηγητής, Τμήμα Πληροφορικής και Τηλεπικοινωνιών 

Η. Μανωλάκος, Καθηγητής, Τμήμα Πληροφορικής και Τηλεπικοινωνιών 

 

 

Γραφιστική επιμέλεια - Επιμέλεια κειμένων: 

Ε. Φλωριάς, Τμήμα Πληροφορικής και Τηλεπικοινωνιών 

 
 

ISSN 1792-8826 
 

 

 

 

 

Copyright© 2017, Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών 

  



 
 

 

 

 
 

Περιεχόμενα 
 
 
 
 

 

Πρόλογος  ……………….………………………..……………… 3 

 

ΠΤΥΧΙΑΚΕΣ ΕΡΓΑΣΙΕΣ …………………………..….…………..  4 

 

N-Gram Graph Decompression ...…………………….…...…..  

Despina - Athanasia Pantazi  

 

5 

Author Profiling in Social Media 
using Topic Modeling methods ……………………………….  

Alexandros  F.  Zeakis  

 

 
16 

  



 
 

 

 

 
 

Πρόλογος 
 
 
 
 
Ο τόμος αυτός περιλαμβάνει περιλήψεις επιλεγμένων διπλωματικών και πτυχιακών 
εργασιών που εκπονήθηκαν στο Τμήμα Πληροφορικής και Τηλεπικοινωνιών του 
Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών κατά το διάστημα 01/01/2016 - 
31/12/2016. Πρόκειται για τον 14ο τόμο στη σειρά αυτή. Στόχος του θεσμού είναι η 
ενθάρρυνση της δημιουργικής προσπάθειας και η προβολή των πρωτότυπων 
εργασιών των φοιτητών του Τμήματος. 

Η έκδοση αυτή είναι ψηφιακή και έχει δικό της ISSN. Αναρτάται στην επίσημη 
ιστοσελίδα του Τμήματος και έτσι, εκτός από τη μείωση της δαπάνης κατά την 
τρέχουσα περίοδο οικονομικής κρίσης, έχει και μεγαλύτερη προσβασιμότητα. Για το 
στόχο αυτό, σημαντική ήταν η συμβολή του κ. Ευάγγελου Φλωριά που επιμελήθηκε 
φέτος την ψηφιακή έκδοση και πέτυχε μια ελκυστική ποιότητα παρουσίασης, ενώ 
βελτίωσε και την ομοιογένεια των κειμένων. 

Η στάθμη των επιλεγμένων εργασιών είναι υψηλή και κάποιες από αυτές έχουν είτε 
δημοσιευθεί είτε υποβληθεί για δημοσίευση. 

Θα θέλαμε να ευχαριστήσουμε τους φοιτητές για το χρόνο που αφιέρωσαν για να 
παρουσιάσουν τη δουλειά τους στα πλαίσια αυτού του θεσμού και να τους 
συγχαρούμε για την ποιότητα των εργασιών τους. Ελπίζουμε η διαδικασία αυτή να 
προσέφερε και στους ίδιους μια εμπειρία που θα τους βοηθήσει στη συνέχεια των 
σπουδών τους ή της επαγγελματικής τους σταδιοδρομίας. 

 
 

Η Επιτροπή Ερευνητικών και Αναπτυξιακών Δραστηριοτήτων 

Θ. Θεοχάρης (υπεύθυνος έκδοσης), Η. Μανωλάκος 

Αθήνα, Ιούνιος 2017 

  



4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΠΠΤΤΥΥΧΧΙΙΑΑΚΚΕΕΣΣ  
ΕΕΡΡΓΓΑΑΣΣΙΙΕΕΣΣ  

  



5 
 

 

N-Gram Graph Decompression 
 

Despina - Athanasia Pantazi  (dpantazi@di.uoa.gr) 

 
ABSTRACT  

The current thesis examines the information represented by an n-gram graph. 
To achieve this task, we searched for all the strings that can be compressed to 
the same n-gram graph. In order to find these strings, we defined the n-gram 
graph decompression problem. In addition, we defined the constraint 
satisfaction problem formulation of the decompression problem, to optimize the 
latter, and we applied a set of search methods to solve it. We also designed two 
variable ordering heuristics to improve our time measurements. Finally, we 
conducted a set of experiments on certain applied search methods to retrieve 
the initial text from the n-gram graph. We compared the findings from our 
experiments and we concluded that the best results for short-length texts were 
achieved when Local Search was performed. For longer-length strings, the 
weighted degree heuristic was the one that offered the best results. 

SUBJECT AREA: Artificial Intelligence  
 

Keywords: n-gram graph, decompression, local search, constraint satisfaction 
problem, depth first search, breadth first search, heuristics 

 

Supervisors: George Giannakopoulos, Dr (NCSR Demokritos) and  
Panagiotis Stamatopoulos, Assistant Professor (National and Kapodistrian 
University of Athens) 

  



6 
 

1. INTRODUCTION 

In the fields of computational linguistics and probability, n-grams are proven a 
useful approach to represent information with various applications, such as text 
classification and text summarization. What is most interesting about this tool is 
that we can search for all the strings that are compressed to an n-gram graph, 
by defining the n-gram graph decompression problem. By formulating the n-
gram graph decompression problem as a constraint satisfaction problem, we 
are able to retrieve the initial text, which is compressed in an n-gram graph, by 
applying a set of search algorithms. 

According to [12] an n-gram is an n-character slice of a longer string. Although 
in the literature the term can include any n co-occuring characters of a string s, 
in this work an n-gram is simply defined as a substring of a string s, where s has 
at least n characters. In [3], a statical, language-neutral and generic 
representation is defined: the n-gram graphs, where n-grams are combined with 
the powerful concept of the graphs. Using a simple extraction algorithm, a text T 
is compressed to a weighted directed graph, where nodes represent n-grams, 
the directed edges indicated the connection between a pair of n-grams, and the 
weight of each edge of the graph indicates the strength of connection each pair 
of n-grams has. The weight of an edge, between the n-grams a and b, is the 
amount of times b was found within a distance Dmax of a.      

 The n-gram graphs offer richer information than widely used representations. 
They are not a lossy text representation method, as they use the whole text T, 
by splitting it into n-grams. We use the JINSECT toolkit, which is a Java-based 
toolkit and library that supports the use of n-gram graphs on a whole range of 
Natural Language Processing applications. The toolkit is a contribution to the 
NLP community, under the LGPL license that allows free use in both 
commercial and non-commercial environments. 

By exploring the n-gram graph, we can extract the initial text T, which was 
compressed into an n-gram graph. We compress a text T to an n-gram graph G, 
by using the toolkit JINSECT, and focus on different algorithmic approaches to 
retrieve the original text T, when we have as input the n-gram graph G. The 
attempt to retrieve the original text is called decompression of the n-gram graph. 
In this work, we study this decompression process of the n-gram graphs, by 
executing the search algorithms Local Search (LS), Depth First Search (DFS) 
and Breadth First Search (BFS). We defined the constraint satisfaction problem 
(CSP) simulation of the decompression problem, so that the experiments we 
performed on the above applied search methods can indicate the most optimal 
search algorithm to complete the decompression procedure. In addition, two 
variable ordering heuristics were applied to the backtracking algorithms DFS 



7 
 

and BFS, in order to maximize the optimization of the results of the 
decompression problem of the n-gram graphs. 

The experimental setting and evaluation of the decompression problem of the n-
gram graphs were focused on strings that have fixed length, which is provided 
by the user. The comparison of the results each search method provides, 
through its experiments, is based on the time the algorithm requires to find the 
initial text, and the method cost, which is the amount of methods each algorithm 
had executed, until the decompression problem was solved. 

2. BASIC CONCEPTS AND RELATED WORK 

2.1 The N-Gram Graph Representation  
In Introduction, an n-gram is described as an n-character slice of a longer string. 
  
Example 2.1.1 Examples of n-grams from the sentence: This is an example. 
Word unigrams: this, is, an, example   
Word bigrams: this is, is an, an example   
Character bigrams: th, hi, is, s_, _a, an, ...  
Character 4-grams: this, his_, is_a, s_an, ...  
 
The definition of n-gram [3], given a text (viewed as a character sequence) is 
given below:   
 

Definition 2.1.1 If n > 0, n ϵ Z, and cj is the i-th character of an l-length  

character sequenceTl = (c1, c2, ..., cl) (our text), then a character n-gram   
Sn = (s1, s2, ..., sn) is a subsequence of length n of:  

Tl⇐⇒ ∃ i ϵ [1, l − n + 1] : ∀ j ϵ[1, n] : sj = ci+j−1.   
We shall indicate the n-gram spanning from ci to ck, k > i, as Si,k, while n-grams 
of length n will be indicated as Sn .  
 
Definition 2.1.2 Let Q be an alphabet of symbols, L the set of all possible n-
length strings of symbols from Q and S = {S1, S2, ..., Sl−n+1} the set of n-grams 

extracted from a text Tl, made of symbols from Q. We also define a function sf : 
S → L, which assigns a n-gram a of the set S to a (unique) string t = s1, ..., sn of 
the set L, if the n-gram a represents the string t, i.e. a = s1s2...sn. We will say 
that a n-gram a is of form of a sting t, if sf(a) = t. Furthermore, two distinct n-
grams a and b are said to be of the same form iff for n-grams a and b we have 
sf(a) = sf(b).  
 
 



8 
 

Example 2.1.2 The 3-grams extracted from the string Caroline’s olive car are: 
S1 = Car, S2 = aro, S3 = rol, S4 = oli, S5 = lin, S6 = ine, S7 = ne′ , S8 = e ′ s, S9 
=′ s_, S10 = s_o, S11 = _ol, S12 = oli, S13 = liv, S14 = ive, S15 = ve_, S16 = e_c, 
S17 = _ca, S18 = car. We see that 3-grams S4 = oli and S12 = oli represent the 

same string oli, but are found in different positions in the text Tl according to 
Definition 4.0.2 we shall call these n-gram to be of the same form. However, 3-
grams S1 = Car and S18 = car do not represent the same string; in other words, 
the n-gram representation we use is case sensitive. 
 
The length of a n-gram n, is also called the rank of the n-gram.  
 
2.2 Related Work   

As we mentioned in the Introduction, n-grams are proven a useful approach to 
represent information with various applications, such as text classification and 
text summarization. By combining n-grams with the powerful concept of the 
graphs, we have a statical, language-neutral and generic representation: the n-
gram graphs. In the following paragraphs of this subsection, we will refer to 
previous works, which have used the n-gram graphs in a number of research 
fields.  

In [4], n-gram graphs were used in the context of Sentiment Analysis over 
Social Media. Through their experimental study, the authors verified that it is a 
very suitable representation model for this task, as it allows substring matching 
and, second, it is a language-neutral method that makes no assumptions on the 
underlying languages. Furthermore, this model exhibits high classification 
efficiency, as well. It involves a limited number of features that solely depends 
on the corresponding number of classes. An n-gram graph based method was 
also used at a methodology for sentiment analysis of figurative language, which 
applies Word Sense Disambiguation. [6] The n-gram graph representation was 
used to assign polarity to word senses.  

In [5], AutoSummENG system was presented, which is a promising novel 
automatic method for the evaluation of summarization systems, based on 
comparing the character n-gram graphs representation of the extracted 
summaries and a number of model summaries. It was found that statistical 
information related to co-occurrence of character n-grams seems to provide 
important information concerning the evaluation process of summary systems. 
The authors concluded the AutoSummENG method has proved to be a 
language-neutral, fully automated, context-sensitive method with competitive 
performance. In [7], a real, multi-document, multilingual news summarization 
application was developed, named NewSum. This system used the 



9 
 

representation of n-gram graphs in a novel manner to perform sentence 
selection and redundancy removal for the summaries.   

In the field of bioinformatics, n-gram graph representation has been a very 
useful method for inquiring genomic sequence composition. In [8], the authors 
implemented the n-gram graph approach on short vertebrate and invertebrate 
constrained genomic sequences of various origins and predicted functionalities. 
In addition, they were able to efficiently distinguish DNA sequences belonging 
to the same species.   

In this work we study the class of strings a given n-gram graph represents to 
better acquire insights related to the possible strengths and weaknesses of the 
representation.  
 
3. PROPOSED APPROACH  

The n-gram graph decompression can be formulated as a search problem. Our 
purpose is to try and find a sequence of steps that will provide the initial text, 
that was compressed in the n-gram graph. To achieve our goal, we will model 
the search problem. In addition, we will define the CSP version of the 
decompression problem.  
 

3.1 Modeling And Solving Search Problems 

In this paper, search problems are implemented according to the following 
assumptions:  
1. Every search problem is expressed as a Problem. The Problem will try 
to find a solution by using a tree structure - the Problem Tree, and the given 
search algorithm - the Search Algorithm. Each Problem Tree is constructed by 
Problem Tree Nodes, that represent the possible states of our search problem. 
2.  The Problem needs to decide whether a Problem Tree Node is a solution 
of the search problem. In addition, it checks whether a problem state is valid 
and it estimates the distance from a solution. Last but not least, the Problem 
can get the next states of the problem, based on the current state. There are no 
other methods the Problem implements, except from the above four. 
3.  The Search Algorithm accepts a Problem as a parameter and tries to find 
a solution, by executing the algorithm.  
 
3.2  N-Gram Graph Decompression Problem as a Constraint Satisfaction 
Problem 

Let Tl be an l-length (in characters) initial text that can generate the n-gram 

graph. The T was divided in l uni-grams. Let G = {VG, ீܧ, L, W} be a n-gram 



10 
 

graph, where VG is the set of the variables, L is a function that labels each 
vertex of the graph and W is a function that declares the weight of each edge. 
Each vertex represents a n-gram of the initial text T. Given the graph G we 
search for all possible texts T, that can generate the n-gram graph. We expect 
that T ∈ T.  We say that all texts in T  are solutions to our problem and we 
represent such a solution as S =< n1, n2, ..., nl >.  
We claim that the problem of finding T can be modeled as a constraint 
satisfaction problem, as follows:  
Variables The variables of the problem are the letters ni of S.  
Domain The non-empty domain of each variable is the set of the labels of the 
unigram graph vertices L(V).  
Constraints The set of constraints is the following:   
1. Every label l ∈ L(V) should appear at least once in S.   
2. Every label l ∈ L(V) should appear at most a number of times equal to the 
weighted degree of the vertex v that is labeled by l. We define as weighted 
degree of a vertex v the sum of the weights of the edges where v appears.  
3. Within a distance Dwin = 1 of a n-gram there are at most Dwin neighboring n-
grams.  
4. For every two neighboring n-grams ni , nj of the text S, there is a directed 
edge ei = {vx, vy}, where 1 ≤ i, j, x, y ≤ l. The amount of times an n-gram ni is the 
neighbor of the n-gram nj is the weight wi of the edge ei .   
5. There are no other vertices and edges in the graph G but those that are 
described in the constraints (i) and (ii).   
Our goal is the initialization of all the variables while all the above constraints 
are satisfied.  
 
3.3  Heuristics for the N-Gram Graph Decompression CSP  
 
 The two heuristics that will be presented depend on the structure of the n-gram 
graph decompression problem. The difference of the two heuristics is that by 
choosing the first one, we will rely on the structure of our problem completely, 
while choosing the second heuristic will include a randomization factor to the 
decompression procedure. In the subsection 3.2, we defined the n-gram graph 
decompression problem as a constraint satisfaction problem, modeled as a 
search problem, so now we can explain the new heuristics.  
 
3.3.1 Weighted Degree Variable Ordering Heuristic   
 
The first heuristic we will define depends on the weighted degree of the vertices 
of the n-gram graph. Our goal is to sort the variables of the decompression CSP 
based on the weighted degree each vertex has. 



11 
 

 
  
Example 3.3.1 Assuming we have the n-gram graph G, which is initialized by 

the string S: queen. According to subsection 3.2, the variables VG of the 
problem are the letters of the S, so: V = {q, u, e, n}  
the weighted degree wd of these vertices is: wd = {q = 1, u = 2, e = 3, n = 1} 
which if seen as sorted as: wd = {q = 1, n = 1, u = 2, e = 3}  
 
By adding this heuristic to our decompression problem, the vertices will be 
ordered. The next variable that will be chosen to be branched on will be the one 
with the minimum weighted degree. When a variable is selected, its weighted 
degree is reduced by one. If we backtrack while performing the search, the 
changes that were applied to the variables that are no longer a part of the 
current solution will have their weighted degree increased.  
 
3.3.2 Probabilistic Variable Ordering Heuristic   
 
The second heuristic we will define is a probabilistic one and will be defined 
below. Firstly we will describe the basic concepts of the probability theory. 
 
Definition 3.3.1 Probability is the measure of the likelihood that an event will 
occur.[11] The modern definition starts with a finite or countable set called the 
sample space, which relates to the set of all possible outcomes in classical 
sense, denoted by Ω. It is then assumed that for each element x ∈ Ω , a 
”probability” value f(x), is attached, which satisfies the following properties:  
 
1.  f(x) ∈  [0,1]  for all  x ∈  Ω  
2.  ∑ ௫∈ఆ(ݔ)݂  = 1  
 
That is, the probability function f(x) lies between zero and one for every value of 
x in the sample space Ω, and the sum of f(x) over all values x in the sample 
space Ω is equal to 1. An event is defined as any subset E of the sample space 
Ω. The probability of the event E, is defined as:  
 
P(E) = ∑ 	௫∈ா(ݔ)݂   
In our case every vertex v of the n-gram graph G is an event V and will have a 
probability P(V). According to the definition 3.3.1, the probability value f(v) will 
satisfy the above two properties. We define the probability P(V) as:  

(3.3.1): P(V) = 
ଵ௪()   ߠ

 
where θ is a factor which will be calculated according to the second equation of 



12 
 

the 3.3.1 definition, and wd is the weighted degree of the particular vertex of the 

n-gram graph. For the set of the n-gram graph vertices VG, we have:  

(3.3.2): ∑ ܲሺݒሻ
௩∈VG	

 = 1 ⇐⇒ ∑ ଵ

௪ௗሺ௩ሻ
ߠ

௩∈VG	
 = 1 ⇐⇒ θ = 

ଵ

∑ భ
ೢሺೡሻ

ೡ∈VG	

  

After calculating the factor θ, we will generate one random number per variable, 
between 0 and 1. The next variable that will be chosen to be branched on will 
be the one that has its probability number closest to θ. When a variable is 
selected, the weighted degree of it is reduced by one, as we did on the first 
heuristic in the previous Section. If we backtrack while performing the search, 
the changes that were applied to the variables that are no longer a part of the 
current solution will have their weighted degree increased.  
 
Example 3.3.2 Assuming we have the n-gram graph G, which is created by the 

string S : red. According to Section 3.2, the variables VG of the problem are the 
letters of the S, so: V = {r, e, d} the weighted degree wd of these vertices is: wd 
= {r = 1, e = 2, d = 1} θ will be calculated according to equation 3.3.2:  

θ =
ଵ

∑ భ
ೢሺೡሻ

ೡ∈VG	

 ⇐⇒ θ = 
ଵ

భ
భ
ାభ
మ
ାభ
భ

 ⇐⇒ θ = 0.4  

Then, we generate a probability for each variable of the CSP problem, so:   
P(V1) = 0.05, P(V2) = 0.23, and P(V3) = 0.68   
These probabilities will be sorted, and we will have the following order:  
sortedProbabilities = {P(V2), P(V3), P(V1)}.   
 
According to the probabilistic heuristic, the next variable that will be chosen to 
be branched on will be the V2. The weighted degree of it will be reduced by one.
  
 
4. EXPERIMENTAL SETTING AND EVALUATION   
 
This Section presents the experimental results and comparisons on a number of 
synthetic datasets. All experiments are conducted on a processor at 2.3 GHz 
with 4 GB memory. The experiments are conducted so that we can compare the 
time measurements and the method cost measurements of the search 
algorithms we implemented to solve the n-gram graph decompression problem, 
which are Local Search, Depth First Search, and Breadth First Search. After 
getting a string as an input, we compress it into an n-gram graph, by using the 
toolkit JINSECT. We ask the user to choose the search method we will execute 
in order to decompress the n-gram graph, and we get a file as an output, which 
includes the decompressed string, the execution time, the solutions we found 
and the method cost.  



13 
 

 
      
4.1 Datasets  
 
In the main source file, the defined String CHARS contains the following 100 
characters:   
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxy
z!@#  
Each time a search is executed, the user is asked to provide:  
1.  the number of the strings that will be generated   
2.  the length of each string   
3. the probability of repetition for the current set of strings that will be produced.  
 
Furthermore, the user can choose to load their own datasets, by providing the 
name of their file, at the beginning of the execution of the program. In this 
thesis, the probability for all the following tests is 0%. As a result, all the 
characters each generated string will have cannot be repeated. In addition, we 
have an upper limit for the amount of executions while performing the 
backtracking algorithms. This limit is the 100 million attempts to check if the 
string we have constructed by that time is the solution of the algorithm. For 
comparability reasons, the datasets that are used for all the following 
experiments are the same.  
 
4.2  Experiments  
 
The following table gives us a general view of all the search methods we used 
to decompress the n-gram graphs.  

  length of text [chars] 
 4 5 6 7 

 Local Search 0,58 2,62 26,12 454,75 
 DFS simple 11.841,68 - - - 

 DFS with CSP 4,15 19,75 221,24 3.222,16 
 DFS with CSP & WD heuristic 0,59 1,2 7,19 71,61 

 DFS with CSP & probabilistic heuristic 1,04 3,81 22,09 303,9 
 BFS simple - - - - 

 BFS with CSP 7,51 63,08 905,6 17.343 
 BFS with CSP & WD heuristic 0,98 4,56 46,41 1.940,1 

 BFS with CSP & probabilistic heuristic 1,54 8,77 100,75 5.254,52 

 Best time 0,58 1,2 7,19 71,61 
 
Table 1: General time measurement comparisons Time in milliseconds, the total strings were 
1000 for every algorithm measurement. The dash symbol (-) indicates no results could be 
provided.  



14 
 

It is shown that the Local Search is a quick search method for the 
decompression of n-gram graphs that have strings consisted by a few 
characters. As you can notice, the simple BFS diagrams are not included, 
because an ”out of memory” error had occurred during our executions. This 
behavior is expected, due to the logic of this algorithm, when dealing with 
strings that do not have multiple appearances of their characters. The simple 
DFS diagrams for the 5, 6 and 7-character length are not included either, as the 
upper limit for the amount of executions while performing the backtracking 
algorithms (100 million attempts) was reached. When we want to decompress 
longer strings, we should prefer the DFS or BFS algorithm for the CSP 
simulation of our problem. The heuristics improve our time measurements, 
especially the weighted degree heuristic.  
  

5. CONCLUSION  

In this thesis, we have implemented and performed experiments on a set of 
search algorithms, in order to solve the decompression problem of the n-gram 
graphs. We defined the constraint satisfaction problem formulation of the 
decompression problem, in order to optimize it, and we designed two variable 
ordering heuristics to improve our time measurements. The experimental results 
presented judged one class of character strings to be decompressed, these 
which do not have multiple character appearances. The best results for short-
length text were achieved when Local Search was performed. For longer-length 
strings, the weighted degree heuristic was the one that offered the best results.
   
The results presented above are encouraging and can be improved. The 
parallelization of the search algorithms we analyzed could offer betters time 
measurements. Furthermore, new variable ordering heuristics and value 
ordering heuristics can be designed and implemented, so that we can 
determine which of them can provide better experimental results for the 
decompression problem. Future work on the decompression problem of the n-
gram graphs can include experiments focused on strings that have multiple 
appearances of the same character.  
 

REFERENCES  

[1]  S. Russell, P. Norvig. (2003), Artificial Intelligence - A modern approach, Second 
Edition, Prentice Hall, pages 179-200.  
[2]  Kenneth H Rosen. (2011), Discrete mathematics and its applications, Seventh 
Edition, McGraw-Hill New York.  
[3]  George Giannakopoulos. (2009), Automatic summarization from multiple 
documents, Citeseer.  



15 
 

[4]  F.Aisopos, G.Papadakis, T.Varvarigou (2011), Sentiment Analysis of Social Media 
Content Using N-Gram Graphs, Proceedings of the 3rd ACM SIGMM international 
workshop on Social media.  
[5]  G. Giannakopoulos, V. Karkaletsis, G. Vouros, P, Stamatopoulos (2008), 
Summarization System Evaluation Revisited: N-Gram Graphs, ACM Trans. Speech 
Lang. Process.  
[6]  V. Rentoumi, G. Giannakopoulos, V. Karkaletsis, G. Vouros (2009), Sentiment 
Analysis of Figurative Language using a Word Sense Disambiguation Approach, 
Borovets, Bulgaria  
[7]  G. Giannakopoulos, G. Kioumourtzis, V. Karkaletsis (2014), NewSum: “N-Gram 
Graph”-Based Summarization in the Real World, Innovative Document Summarization 
Techniques: Revolutionizing Knowledge Understanding, IGI  
[8]  D. Polychronopoulos, A. Krithara, C. Nikolaou, G. Paliouras, Y. Almirantis, G. 
Giannakopoulos (2014), Analysis and Classification of Constrained DNA Elements with 
N-gram Graphs and Genomic Signatures, Algorithms for Computational Biology, 
Springer International Publishing  
[9]  D. Poole, A. Mackworth. (2010), Artificial Intelligence: Foundations of 
Computational Agents, Cambridge University Press, 4.8  
[10]  F. Rossi, P. van Beek, T.Walsh (2006), Handbook of Constraint Programming, 
Elsevier B.V., 4.6  
[11]  G and C Merriam, Webster’s Revised Unabridged Dictionary (1913)  
[12]  William B Cavnar, John M Trenkle, et al. N-gram-based text cat- egorization. Ann 
Arbor MI, 48113(2):161–175, 1994.  
[13]  Faidra Monachou, Designed and implemented two n-gram graph decompression 
algorithms in Java using the JInsect Toolkit, 2013, Personal communication with 
supervisor.  
[14]  A. Auger, B. Doerr. (2011) Theory of Randomized Search Heuristics: Foundations 
and Recent Developments, preface [15] K. Potter (2006) Methods for Presenting 
Statistical Information: The Box Plot. 

  



16 
 

Author Profiling in Social Media 
using Topic Modeling methods 

 
Alexandros  F.  Zeakis (sdi1200038@di.uoa.gr, alzeakis@gmail.com) 

 
 
 
ABSTRACT 

In Author Profiling Task, researchers, given a number of texts, try to find the 
characteristics of the author, e.g. Age and Gender, based on stylistic- and 
content-based features. In this thesis we tried to solve the Author Profiling Task 
utilizing topic modeling methods, such as Latent Semantic Indexing and, mainly, 
Latent Dirichlet Allocation. To this end, we represented each document as a 
mixture of topics and then used this latent representation as input features for 
known classification algorithms, such as Support Vector Machine, to create our 
predictive system. To be noted, our approach was a part of the solution that 
was submitted to the 4th Author Profiling Task at PAN 2016. 

We used two corpora for this task, one based on blogs and one on tweets, while 
all documents were preprocessed by known Natural Language Processing 
(NLP) methods. The development of the system consists of phases, where in 
each one specific parameters of the model were optimized and finalized. 
Experimental results show that topic modeling can be used for authorship age 
and, mainly, gender prediction. In summary, the proposed methodology 
demonstrates that latent topics make for good descriptors regarding age and 
gender of the authors and also provides us with new means to explore the 
discussion themes among age groups and genders. 

 
Keywords: Topic Modeling, Latent Dirichlet Allocation, Author Profiling, 
Information Retrieval, Latent Semantic Indexing 
 
 
Advisors 
Anastasia Krithara, Associate Researcher (N.C.S.R. Demokritos), Georgios 
Paliouras, Research Director (N.C.S.R. Demokritos), Panagiotis 
Stamatopoulos, Assistant Professor 
 

 



17 
 

1. INTRODUCTION 

Automatic Authorship Identification (AAI) exists for almost 120 years. 
Mendenhall [10] was the first to examine works of Bacon, Shakespeare and 
Marlowe aiming to detect quantitative stylistic differences using word length. 
Since then, things have changed rapidly due to the development of technology 
[16]. 

There are three major fields in AAI: Authorship Attribution, Author Identification 
and Author Profiling. In the first two, the goal is to recognize the author from a 
set of authors, while in Author Profiling, the goal is to find specific 
characteristics of the author, based on stylistic- or content-based features. 

The Author Profiling task is a yet-unsolved problem, due to its difficulty. It has 
been studied by many researchers [1;2;8;11;12;13;14] and, while some show 
great progress and good results, it still has many unexplored areas and room 
for improvement. This was one of the main incentives for our research. That is, 
to create a novel system of prediction, based on the topics of discussion 
between different age groups and genders. 

In our approach, we concatenated each author's texts in one big document and 
then preprocessed that document with known natural language processing 
methods, such as the removal of punctuation or common words. Then, using 
Latent Dirichlet Allocation, we extracted the latent topic distribution for each 
document and used it as input features in a Support Vector Machine classifier. 

In this thesis we present the necessary steps of developing the aforementioned 
system along with interesting findings that were discovered during its creation. 

 

  



18 
 

2. PROPOSED APPROACH 

The purpose of this chapter is to analyze the approach that we followed to solve 
the Author Profiling Task, while participating in PAN 2016. This chapter follows 
every step of the proposed methodology, explaining the importance of it and 
justifying every choice that we made. 

 

2.1 Preprocessing 

Preprocessing is essential to clean data from irrelevant information and transforming 
them into a form appropriate for feature extraction. These steps include wide-accepted 

Figure 1: The workflow of the proposed approach 



19 
 

methods, such as cleaning html, removing numbers and common words, 
tokenizing. We handpicked also methods specifically for this task, which is 
detwittifying (cleaning texts from twitter elements, such as @reply, hashtags, 
links) and removing punctuation, because in this task, finding topics does not 
require punctuation. 

2.2 Feature Extraction 

 While most of the approaches use features that are proven effective, such as n-
grams, we wanted to experiment on something different, since our approach is 
an extension of [7]. The main idea was  to get the per-document topic 
probability distribution and use that to train the classifier. 

 We used two known methods for Topic Modelling [5]: Latent Dirichlet Allocation 
(LDA) and Latent Semantic Indexing (LSI). There are enough differences 
between LDA and LSI, but one could claim that the main one is that LDA is 
probabilistic and is based on Dirichlet Distributions, while LSI is deterministic 
utilizing linear algebra methods.  

 Latent Semantic Indexing is used more frequently as a way to reduce data 
dimensions, because the known linear algebra method Singular Value 
Decomposition (SVD) is used. In Information Retrieval, though, is used to 
create topic models [9], as it can be used to detect relations between words. 
There are two phases in LSI: the first one is SVD, while the second is rank 
lowering, meaning that only some of the transformed data are preserved in 
order to reconstruct the original matrix. In our approach we used the library 
Gensim1. 

  On the other hand, the basic idea behind Latent Dirichlet Allocation, as it was 
described by D.Blei, A.Ng and M.Jordan in [4], is as follows: Each document 
can be represented as a mixture of words. If we can find distinct groups of 
words, based on the frequency of the words in them, then each word could be 
represented as a mixture of these groups, called topics. As a result, each 
document can be represented as a mixture of topics. In our approach we used 
two different implementations of LDA. The first one2 implements the Online 
Variational Bayes (VB) algorithm for LDA [3] and the second one3 creates the 

                                                            

1 https://radimrehurek.com/gensim/models/lsimodel.html 

2 https://radimrehurek.com/gensim/models/ldamodel.html 

3 http://mallet.cs.umass.edu/ 



20 
 

generative model through the implementation of Collapsed Gibbs Sampling 
Algorithm [6]. 

2.3 Classification 

 Classifiers are one of the most crucial parts of the problem and selection task is 
very important. Fortunately, Support Vector Machines (SVM) are a very 
powerful category of classifiers and can be used in a wide variety of problems, 
so it is only natural that we preferred them. We also used Naive Bayes, but only 
for cross-reference results and in the first few steps of our implementation. It 
became clear later that we should use only SVM, because the results of SVM 
were much better than the ones from NB. 

 Support Vector Machines are supervised learning models. They can work 
efficiently with high-dimensional data, while avoiding the curse of 
dimensionality. (Curse of dimensionality refers to the phenomenon, where we 
examine data in a high-dimensional space, which are inevitably scattered,  and 
thus impeding the task of either classification or clustering.) The trick of 
achieving that is using a subset of the training data, known as support vectors. 

  



21 
 

3. EXPERIMENTS & RESULTS 

This chapter consists of two sections: the first one (Experimental Setup) is 
about the corpora that were used and the metrics used to evaluate the 
classifier, while the second one (Results) describes in detail every phase of the 
development. 

3.1 Experimental Setup 

3.1.1 Datasets 

 The quality of the data is very important for the quality of the outcome. We used 
two datasets during the development of the classifier. The first one [15] was 
based on blogs and consisted of 19320 authors, where the length and number 
of texts of each author was different. In the next Figure it is clear that, in 

Gender, the classes are balanced, while in Age some classes are skewed. 

 The second corpus was the dataset for PAN 2016, based on tweets and 
consisted of 436 authors. In contrast to the previous corpus, each text has 
maximum 140 characters, but each author can have many texts. Gender 
classes are again balanced, while in Age some classes are under-represented, 
such as '65-xx'. 

Figure 2: Age (Left) & Gender (Right) Distribution on blog corpus 



22 
 

 

3.1.2 Evaluation Measures 

 The metrics are necessary to measure the performance of the classifier. 
Assuming that there are two classes, a positive one and a negative one, there 
are four groups of predictions: true positive (tp), false positive (fp), false 
negative (fn) and true negative (tn). When a prediction is characterized as true, 
it means that the current prediction was correct and when is characterized as 
false, it means that it was incorrect.  

 When these four categories are defined we can use them to measure the 
performance with these metrics: 

Measure Formula Description 

Accuracy tp+ tn
tp+ fn+ fp+ tn  

How many instances were correctly predicted 

compared to all data 

Precision tp
tp+ fp  

Fraction of  positive predicted samples that were 

actually positive 

Recall tp
tp+ fn  

Fraction of positive predicted samples over all positive 

samples 

Table 1: Measures used for evaluation 

  

Figure 

eft) & Gender (Right) Distribution on PAN 2016 corpus 



23 
 

 In all three metrics, the higher the classifier achieves, the better. 

3.2 Results 

In this section we are going to present the results of our experiments, based on 
the approach we developed in the previous chapter. Each subsection in this 
section follows a major phase during the development of the classifier. Each 
phase is about a critical decision that affects the rest of the development, such 
as the size/number of chunks of text or the number of topics. The phases are in 
chronological order. 

3.2.1 Phase 1: Size of Text 

At this phase, due to the unavailability of the PAN corpus, we used the blog 
corpus.  Our first approach was to use chunks of text for each author,  but there 
was no constant number of chunks or size and in LDA, 40 topics were used. To 
be noted, these tests were performed on the training data, since if the 
performance based on the training data couldn't be improved, then good results 
when classifying on test data would be unreachable. Accuracy in predictions in 
Age were quite low (less than 60%) and only one label was predicted, so a 
suggested fix could be to concatenate all texts of each author, thus transitioning 
from Instance-based Classification to Profile-based Classification.  

While there was in improvement in the new approach (more than 90%), when 
predicting on testing data than number fell to ~65%. Nevertheless, between 
SVM and NB classification algorithms, the best performance was shown by 
SVM. In addition to that, concatenation of the texts proved much more efficient 
than chunks of text, so it was kept for the next phase. 

3.2.2 Phase 2: Number of Topics 

Since in that phase we switched to the PAN corpus, we had to recalibrate the 
number of topics. We ran many experiments using all possible parameters. 
From now on, when the term triplet is mentioned, it is going to be in the form of 
{no_topics, kernel_of_SVM, C_of_SVM}.  After consecutive executions on the 
best parameters, we discovered that the Gensim Library was quite unreliable, 
as the same parameters and same portion of data could lead to different 
results. The same could be said for Mallet, but Mallet results differed very little 
between executions, while the deviance of results in Gensim led to the decision 
to use only Mallet for the next experiments. The best triplet for both Age and 
Gender was {20, linear, 100}. 

3.2.3 Phase 3: Stratify and More Authors 

 For the next phase, we wanted to improve the metrics and we started thinking 
ways to do that. Among many ideas, the stratified splitting of data came up. In 



24 
 

stratified splitting, proportionally equal amounts of each class are used in both 
training and testing phase. Thus, the higher occurrence or absence of a class in 
the training data should be dealt with and not affect the performance of the 
classifier. 

 As a next step, the number of authors was increased in order to test the 
classifier on bigger data. Results were not that good (Age Accuracy less than 
40%), but both steps were necessary for the next and final phase. 

3.2.4 Phase 4: Final Results 

 In this final phase, we present the final results with the best parameters 
(triplets), that were found after many experiments. 

 There are classes in Age that were under-represented, such as 65-xx. In the 
Topic Distribution diagrams, though, it could be seen that every class had a 
chance to dominate in some topics. The same could be said about each topic's 
most characteristic words, as most words could easily lead to the writer's age 
class. While there were topics that were distinctively true, most of them were 
incorrect and the same behaviour occured in Gender. The final results are 
presented in the following table: 

 

 {20, linear, 100} {20, linear, 100} 

Accuracy 0.3065 0.6230 

Precision [ 0.25, 0.3913, 0.2917, 0.1818, 0 ] [ 0.64, 0.6111 ] 

Recall [ 0.2, 0.45, 0.3043, 0.1538, 0 ] [ 0.5333, 0.7097 ] 

Fbeta [ 0.2222, 0.4186, 0.2979, 0.1667, 0 ] [ 0.5818, 0.6567 ] 

Table 2: Final Results on Age (Left) & Gender (Right) 

 

  



25 
 

4. CONCLUSIONS & FUTURE WORK 

The goal of this thesis was to prove, that given the text of an author, his/her Age 

and Gender could be found, based on stylistic- and content-based features. 

After many experiments, the following conclusions were produced: 

 Concatenated texts produce better results than chunks of texts. Yet, 

neither the chunks of texts that were used in this approach had 

constant size, nor each author had the same amount of chunks. So, 

we can not claim that in every problem concatenating texts can be the 

solution. 

 Solely based on figures, LDA produced better results than LSI. So, it 

is clear that LSI is not an algorithm appropriate for this kind of 

problem. 

 The implementation of LDA in Mallet (Gibbs sampling) was more 

stable than the one in Gensim (online Variational Bayes), meaning 

that the results of LDA-Mallet did not have a wide deviance between 

executions.  

 From the two classification algorithms that we used, Support Vector 

Machine and Naive Bayes, it was clear after some experiments, that 

SVM was more appropriate for this task. 

 Classes were better separated by a linear classifier, as the best 

triplets of our executions included kernel 'linear'. 

 Based on the final results, the problem of Gender was handled better 

than the problem of Age. One explanation could be that in Gender 

there are only two classes and they were also balanced, while in Age, 

there were five classes, which were skewed and that added an extra 

difficulty in the task. 

The results, though, in general, were not good and that implies that further work 

is required in order to improve the results of our system and the quality of the 

predictions. Based on the related work and the choices that we made, the 

following suggestions could lead to an improvement. 



26 
 

 Instead of concatenated texts, we could try again chunks of texts, this 

time with a specific number of chunks per author or a specific size for 

each chunk. Thus, authors with few/small texts could have the same 

representation as the others. 

 Lemmatizer is generally a good preprocessing step, although we did 

not use it in the final approach. WordNet Lemmatizer performed 

poorly, as words expected to be lemmatized, were not. Observing the 

final topic words, a lemmatizer (or stemmer) is required in order to 

improve further the results. 

 Language filtering is necessary, as there are topics, as seen in the 

topic words of the final results, whose entire top-words are non-

english. 

 While using only the LDA output as features was producing poor 

results, if combined with some other features (e.g. n-grams), it could 

lead to improvement in the results. 

 While LDA was the best topic modeling algorithm of those we tried, 

we could still try others, such as Hierarchical Dirichlet Process (HDP). 

 

REFERENCES 

 Argamon, Shlomo, et al. "Mining the blogosphere: Age, gender and the varieties of self-
expression." First Monday 12.9 (2007). 

 Argamon, Shlomo, et al. "Gender, genre, and writing style in formal written texts." TEXT-THE 
HAGUE THEN AMSTERDAM THEN BERLIN- 23.3 (2003): 321-346. 

 Blei, David, and M. Hoffman. "Online Learning for Latent Dirichlet Allocation." Neural 
Information Processing Systems. 2010. 

 Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of 
machine Learning research 3.Jan (2003): 993-1022. 

 Chang, Jonathan, et al. "Reading tea leaves: How humans interpret topic models." 
Advances in neural information processing systems. 2009. 

 Griffiths, Tom. "Gibbs sampling in the generative model of latent dirichlet allocation." 
(2002). 

 Grivas, Andreas, Anastasia Krithara, and George Giannakopoulos. "Author profiling 
using stylometric and structura feature groupings—notebook for pan at clef 2015." 
CLEF 2015 Evaluation Labs and Workshop–Working Notes Papers. 

 Koppel, Moshe, Shlomo Argamon, and Anat Rachel Shimoni. "Automatically 
categorizing written texts by author gender." Literary and Linguistic Computing 17.4 
(2002): 401-412. 



27 
 

 Laham, T. K. L. D., and Peter Foltz. "Learning human-like knowledge by singular value 
decomposition: A progress report." Advances in Neural Information Processing 
Systems 10: Proceedings of the 1997 Conference. Vol. 10. MIT Press, 1998. 

 Mendenhall, Thomas Corwin. "The characteristic curves of composition." Science 
(1887): 237-249. 

 Nguyen, Dong-Phuong, et al. "" How old do you think I am?" A study of language and 
age in Twitter." (2013). 

 Rangel, Francisco, et al. "Overview of the 3rd Author Profiling Task at PAN 2015." 
CLEF. 2015. 

 Rangel, Francisco, et al. "Overview of the 2nd author profiling task at pan 2014." CEUR 
Workshop Proceedings. Vol. 1180. CEUR Workshop Proceedings, 2014. 

 Rangel, Francisco, et al. "Overview of the author profiling task at pan 2013." CLEF 
Conference on Multilingual and Multimodal Information Access Evaluation. CELCT, 
2013. 

 Schler, Jonathan, et al. "Effects of Age and Gender on Blogging." AAAI Spring 
Symposium: Computational Approaches to Analyzing Weblogs. Vol. 6. 2006. 

 Stamatatos, Efstathios. "A survey of modern authorship attribution methods." Journal of 
the American Society for information Science and Technology 60.3 (2009): 538-556. 

 
  



28 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Τμήμα Πληροφορικής και Τηλεπικοινωνιών 

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, 

Πανεπιστημιούπολη, 15784 Αθήνα 

 
ISSN 1792-8826 


