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Part I:
What is wrong with
cost-sensitive Boosting?



Boosting

Can we turn a weak learner into a strong learner? (Kearns, 1988)

Marginally more
accurate than
random
guessing

Arbitrarily
high
accuracy

YES! ‘Hypothesis Boosting’ (Schapire, 1990)

AdaBoost (Freund & Schapire, 1997)

Godel Prize 2003



Ad d bOOSt (Freund & Schapire 1997)

Ensemble method — very successful, rich theoretical depth.
Train models sequentially.
Each model focuses on examples previously misclassified.

Combine by weighted majority vote.



AdaBoost: training

Construct strong model sequentially by combining multiple
weak models

data + labels

-
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Each model tries to correct the mistakes of the previous one



AdaBoost: predictions

Prediction: weighted majority vote among M weak learners

New Example x'
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Model 1 Model 2 Model3 « 44 Model M
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H(x") : Final Prediction on ¥’



AdaBoost: algorithm

Define a distribution over the training set, Dy (i) = +, Vi.
fort=1to T do
Build a classifier h; from the training set, using distribution D;.

Set oy = £ In (1_6’5)

- Majority voting confidence in classifier t

Update D;y 1 from Dy :

N, —oryihe(xz;)
Set Dt_|_1(i) _ D¢(7)e Zzy t
end for

Distribution update

H(z') = sign( Zle ahy (:1:’)) Maijority vote on test example x’



Adaboost

How will it work on cost sensitive problems? [ 0 CIBN]
CrpP

i.e. with differing cost for a False Positive / False Negative ...

...does it minimize the expected cost (a.k.a. risk)?'




Cost sensitive Adaboost...

AdaBoost (Freund & Schapire 1997)

AdaCost (Fan et al. 1999) 15+ boosting variants
AdaCost(f2) (Ting 2000) over 20 years

CSBO (Ting 1998)

CSBI (Ting 2000) Some re-invented

CSB2 (Ting 2000)
AdaC1l (Sun et al. 2005, 2007)

(

AdaC2 (Sun et al. 2005, 2007) Most proposed as
(
(

multiple times

AdaC3 (Sun et al. 2005, 2007) heuristic modifications
CSAda (Mashnadi-Shirazi & Vasconselos 2007, 2011) . .
to original AdaBoost

AdaDB (Landesa-Véazquez & Alba-Castro 2013)

AdaMEC (Ting 2000, Nikolaou & Brown 2015)
CGAda (Landesa-Vazquez & Alba-Castro 2012, 2015) Many treat FP/FN costs
AsymAda (viola & Jones 2002) as hyperparameters



A step back... Why is Adaboost interesting?

Functional Gradient Descent (Mason et al., 2000)
Decision Theory (Freund & Schapire, 1997)
Margin Theory (Schapire et al., 1998)

Probabilistic Modelling (Lebanon & Lafferty 2001; Edakunni et al 2011)

Set oy — %ln (ﬂ)

€t

Update D;y1 from D :

, D. (e~ %tyiht(z;)
Set Dy (i) = 220 Z



So for a cost sensitive boosting algorithm...

Functional Gradient Descent

Decision Theory

Margin Theory

Probabilistic Modelling

My new algorithm

AR

“Does my new algorithm
still follow from each?”

Set a; = %ln (ﬂ)

€t

Update D;y1 from D :

N —oary;he(x;)
Set Dt_|_1(7:) — Dt(z)e tYint

Z+



Functional Gradient Descent

N
1
o o J(Ft(x)) = NZL(yZFt(Xz)),
= Direction in function space
9
D+l _ Oy, Fr(x;) J(Fi(x))

L Dinimgme (X))

Step size

| af = arg min [1 ZL(yZ Fi_1(x;) —I—Oztht(xz))>]

(627

| 1=1

Property: FGD-consistency

Are the voting weights and distribution updates
— consistent with each other?

(i.e. both derivable by FGD on a given loss)




Decision theory

Ideally: Assign each example to risk-minimizing class:

Predict class y = 1 iff
CFP
Crp +CEN

ply =1x) >

Property: Cost-consistency

0 CFN] Does the algorithm use the above
crp 0 (Bayes Decision Rule)
to make decisions?

(assuming ‘good’ probability estimates)




Margin theory
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Large margins encourage small generalization error.
Adaboost promotes large margins.



Margin theory — with costs...
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Different surrogate losses for each class.



Loss

So for a cost sensitive boosting algorithm...

We expect this to be the case.
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Property: Asymmetry preservation

Does the loss function preserve the relative
importance of each class, for all margin values?




Probabilistic models

‘AdaBoost does not produce good probability estimates.
Niculescu-Mizil & Caruana, 2005

‘AdaBoost is successful at [..] classification [..] but not class probabilities.
Mease et al., 2007

‘This increasing tendency of [the margin] impacts the probability estimates by
causing them to quickly diverge to 0 and 1.

Mease & Wyner, 2008



Probabilistic models

Adaboost tends to produce probability
| | . . estimates close to 0 or 1.
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Why this distortion?

Estimates of form: Estimates of form:

1
| 4 ¢—2F(X)

2t (x)=1 0t

ply=1[x) = ==
=1 %t

ply =1[x) =

(Niculescu-Mizil & Caruana, 2005) (Friedman, Hastie & Tibshirani, 2000)

Product of Experts; if one
term closetoOor 1, it
dominates.

As margin is maximized on
training set, scores will
tend to O or 1.



Probabilistic Models

Adaboost tends to produce probability
. . . — estimates close to O or 1.
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Adaboost output (score)
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- Property: Calibrated estimates
Probability

Does the algorithm generate “calibrated”
probability estimates?




The results are in...

Method FQD- C(?st- Asymme.try- Cal?brated
consistent | consistent | preserving estimates

AdaBoost (Freund & Schapire 1997) Ve v

AdaCost (Fan et al. 1999)

AdaCost(fs) (Ting 2000)

CSBO (Ting 1998) v All

CSB1 (Ting 2000) v algorithms

CSB2 (Ting 2000) v oroduce

AdaCl (Sun et al. 2005, 2007) e uncalibrated

AdaC2 (Sun et al. 2005, 2007) v v probability

AdaC3 (Sun et al. 2005, 2007) estimates!

CSAda (Mashnadi-Shirazi & Vasconselos 2007, 2011) v v

AdaDB (Landesa-Vazquez & Alba-Castro 2013) v v

AdaMEC (Ting 2000, Nikolaou & Brown 2015) Ve Ve v

CGAda (Landesa-Vazquez & Alba-Castro 2012, 2015) v v v

AsymAda (viola & Jones 2002) v v v

So could we just calibrate these last three? We use “Platt scaling”.




Platt scaling (logistic calibration)

Training: Reserve part of training data (here 50% -more
on this later) to fit a sigmoid to correct the distortion:

Adaboost
output |
(score)

Empirically Observed
Probability
Prediction: Apply sigmoid transformation to score

(output of ensemble) to get probability estimate



Experiments
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All except
In summary... Ca,,brat:d All 4 Properties

|

Average Brier Score Rank | I | I I

[=:]

& &3 FE P D P
P o Sl 'o S ’b \s 3 @
0.@)0%06660@0&.0\.\0\,@

f&o@» R i @(& Sl
S 7 &7 O
oc’vb&q\@v
X

AdaMEC, CGAda & AsymAda outperform all others.

Their calibrated versions outperform the uncalibrated ones



In summary...

“Calibrated-AdaMEC” was one of the top methods.

1. Take original Adaboost.

2. Calibrate it (we use Platt scaling)

CFPpP

3. Shift the decision threshold....
CFP + CFN

Consistent with all theory perspectives.
No extra hyperparameters added.

No need to retrain if cost ratio changes.

Consistently top (or joint top) in empirical comparisons.



Methods & properties

Method FQD- C(?st- Asymme.try- Cal?bra,ted
consistent | consistent | preserving estimates

AdaBoost (Freund & Schapire 1997) Ve v

AdaCost (Fan et al. 1999)

AdaCost(fs) (Ting 2000)

CSBO (Ting 1998) v All

CSB1 (Ting 2000) v algorithms

CSB2 (Ting 2000) v oroduce

AdaCl (Sun et al. 2005, 2007) e uncalibrated

AdaC2 (Sun et al. 2005, 2007) v v probability

AdaC3 (Sun et al. 2005, 2007) estimates!

CSAda (Mashnadi-Shirazi & Vasconselos 2007, 2011) v v

AdaDB (Landesa-Vazauez & Alba-Castro 2013) v v

AdaMEC (Ting 2000, Nikolaou & Brown 2015) Ve Ve v

CGAda (Landesa-Vazquez & Alba-Castro 2012, 2015) v v v

AsymAda (viola & Jones 2002) v v v

So could we just calibrate these last three? We use “Platt scaling”.



Q: What if we calibrate all methods?

A: In theory, ...

... calibration improves probability estimates.

... if a method is not cost-sensitive, will not make it.
... if the steps are not consistent, will not make them.

... if class importance is swapped during training, will not correct.



Results

Average rank in terms of Brier score
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Yes...
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All Except
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Standard

AdaBoost!!!



Methods & properties

Method FQD- C(?st- Asymme.try- Cal?bra,ted
consistent | consistent | preserving estimates

AdaBoost (Freund & Schapire 1997) Ve v

AdaCost (Fan et al. 1999)

AdaCost(fs) (Ting 2000)

CSBO (Ting 1998) v All

CSB1 (Ting 2000) v algorithms

CSB2 (Ting 2000) v oroduce

AdaCl (Sun et al. 2005, 2007) e uncalibrated

AdaC2 (Sun et al. 2005, 2007) v v probability

AdaC3 (Sun et al. 2005, 2007) estimates!

CSAda (Mashnadi-Shirazi & Vasconselos 2007, 2011) v v

AdaDB (Landesa-Vazquez & Alba-Castro 2013) v v

AdaMEC (Ting 2000, Nikolaou & Brown 2015) Ve Ve v

CGAda (Landesa-Vazquez & Alba-Castro 2012, 2015) v v v

AsymAda (viola & Jones 2002) v v v

So could we just calibrate these last three? We use “Platt scaling”.




Q: Sensitive to calibration choices?

A: Check it out on your own!

https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

() Cost-sensitive-Boosting-T... >+

= X

€ | ©® 0 & GitHub, Inc. (US) | htps://github.com/nnikolao g-Tutorial/blob/master/CalibratedAdaMEC. ¢ Psearch oBe 9 ¥+ & @ =
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regression or Platt scaling (.. logistic calibration), respectively

~
test_set_prent: float in (0, 7). size of test set as a percentage of the original dataset size

cal_set_prent: fioat in {0, 1), size of calibration set as a percentage of the training dataset size

Allis set! Simply change the code below and run it {click on it and press Shift+Enter) to see how the two methods compare.

In [12]: import compares# C

ocom', 2, 1,

compare . AdaMECvsAdaBoost (' mas!

e.DecisionTreeClassifier(max_depth=1)', 'SMMME', 50
igmoid', 0.25,

Brier Score:

kdaBoost: 0.21305052218831894
Calibrated AdaMEC: 0.003662990514B640616
Negative Log-likelihood:
ndaBoost: 0.61B9783063692328
Calibrated AdaMEC: 0.01199219380918814
Misclassification Cost:
ndaBoost: 18.626214640466422

Calibrated RdaMEC: 2.5255B84258259558
Calibrated RdaMEC outperformed RdaBoost!

More likely than not, Caliorated AdaMEC outperformed AdaBoost, not only in terms of probability estimation (lower Brier score and
negative log-iikelihood) but also in terms of skew-sensitive classification (lower misclassification cost). In case this did not happen,
run the comparison again. In expeciation Calibrated AdaMEC should produce better results.

still, this might not happen, for fwo main reasons:
(i) The problem is relatively balanced.

(ii) AdaBoost finds an almost perfect solution i.e. the classes are pretly separable.




Results

Isotonic regression > Platt scaling, for larger datasets

Can do better than 50%-50% train-calibration split by using fewer data
to calibrate and more to train (problem dependent; see Part Il)

(Calibrated) Real AdaBoost > (Calibrated) Discrete AdaBoost...



In summary...

“Calibrated-AdaMEC” was one of the top methods.

1. Take original Adaboost.

2. Calibrate it (we use Platt scaling)

CFPpP

3. Shift the decision threshold....
CFP + CFN

Consistent with all theory perspectives.
No extra hyperparameters added.

No need to retrain if cost ratio changes.

Consistently top (or joint top) in empirical comparisons.



Conclusions

We analyzed the cost-sensitive boosting literature

... 15+ variants over 20 years, from 4 different theoretical perspectives

“Cost sensitive” modifications to the original Adaboost are not needed...

... if the scores are properly calibrated,
and the decision threshold is shifted according to the cost matrix.
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Resources & code

e Easy-to-use but not so flexible ‘Calibrated AdaMEC’
python implementation (scikit-learn style):

https://mloss.org/revision/view/2069/

* i-python tutorial for all this with interactive code for
‘Calibrated AdaMEC’, where every choice can be tweaked:

https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial



https://mloss.org/revision/view/2069/
https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial

End of Part |

Epwtnoelc; - Questions?



Part Il
Calibrating Online Boosting

gad8%”




Online learning

Examples presented one (or a few) @ a time
Learner makes predictions as examples are received

Each ‘minibatch’ used to update model, then discarded;
constant time & space complexity

Why?
e Data arrive this way (streaming)
* Problem (e.g. data distribution) changes over time
* To speed up learning in big data applications



Online learning

For each minibatch n do:

Receive n

Predict label / class probability of examplesin n
Get true label of examples in n

Evaluate learner’s performance on n

Update learner parameters accordingly

Al ol ol A




Online Boosting (0za, 2004)

Train weak learners sequentially on each datapoint x:

If weak learner misclassifies x,
Increase weight of x for the purposes of updating
parameters of next weak learner

Else,
Decrease it...

Is it good at estimating probabilities?



Empirical probability

Online Boosting probability estimates

Probability estimates -as in AdaBoost- are uncalibrated:
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How to calibrate online Boosting?

Batch Learning: reserve part of the dataset to train
calibrator function (logistic sigmoid, if Platt scaling)

Online learning: cannot do this; on each minibatch we
must decide whether to train ensemble or calibrator

How to make this decision?



Naive approach

* Calibrate every N rounds:

For each minibatch n do:
1. Receiven
Predict class probability of examplesin n
Get true label of examplesin n
Evaluate learner’s performance on n (e.g. likelihood)

Every N-th round:

5.1 Update calibrator parameters accordingly
Every other round:

5.2 Update ensemble parameters accordingly

nRWN




Complications

How to pick N?
* Will depend on problem
* Will depend on ensemble hyperparameters
* Will depend on calibrator hyperparameters
 Might change during training...

In batch learning can choose via cross-validation; not here



Still, naive better than nothing

Results with N = 2 (not best value):

Empirical probability
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A more refined approach

* What if we could learn a good sequence of alternating
between actions?

Bandit
Algorithms




Bandit optimization

A set of actions (arms) -on each round we choose one
Each action associated with a reward distribution

Each time an action taken we sample its reward distribution
Sequence of actions that minimize cumulative regret?

Exploration vs. Exploitation

In online calibrated boosting:
Two actions: { train, calibrate }
Reward: Increase in overall model likelihood after action



Thomson sampling

A Bayesian take on bandits for learning reward distribution

Assume rewards are Gaussian; start with Gaussian prior,

then update using self-conjugacy of Gaussian distribution

Take action with highest expected reward



UCB policies

‘Optimism in the face of uncertainty’

Choose not the action with best mean reward, but that with
highest upper bound on reward

Bounds derived for arbitrary (UCB1, UCB1-Improved) or specific
(KL-UCB) reward distributions



Discounted rewards
‘Forgeting the past’
Weigh past rewards less; protects from non-stationarity

Why non-stationary?
e Data distribution might change...

* ...most importantly: reward distributions will change:
if we perform one action many times, the relative reward for
performing the other is expected to have increased



Some initial results

* Uncalibrated
vs. Naively-Calibrated N € {2, 4, 6,8,10,12, 14}
vs. UCB1, UCB1-Improved, Gaussian Thompson Sampling
vs. Discounted versions of above 2555

* Initial results: A
 calibrating (even naive) > not calibrating4# o
* discounted versions = as ‘Every N’ policy (+ no need to set N)
* Not discounted - one action (as expected)



In summary...

Online Boosting poor probability estimates; some calibration can improve
Learn a good sequence of calibration / training actions using bandits
Online, fast, at least as good as ‘best naive’

Easy to adapt to other problems (e.g. cost-sensitive learning)

Robust to ensemble/calibrator hyperparameters

Extensions: e.g. adversarial, contextual, refine calibration, ...



Euyaplotw! - Thank you!

Epwtnoelc; - Questions?



